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Preface

This book is intended to serve both as a textbook for a senior-level undergraduate
course, and as a reference for practitioners.

Readers should know enough discrete mathematics to understand “big-O”
notation, and what it means for a problem to be NP-complete. It is helpful to
be familiar with elementary systems constructs such as processors, threads, and
caches. A basic understanding of Java is needed to follow the examples. (We
explain advanced language features before using them.) Two appendixes summa-
rize what the reader needs to know: Appendix A covers programming language
constructs, and Appendix B covers multiprocessor hardware architectures.

The first third covers the principles of concurrent programming, showing how
to think like a concurrent programmer. Like many other skills such as driving a car,
cooking a meal, or appreciating caviar, thinking concurrently requires cultivation,
but it can be learned with moderate effort. Readers who want to start program-
ming right away may skip most of this section, but should still read Chapters 2
and 3 which cover the basic ideas necessary to understand the rest of the book.

We first look at the classic mutual exclusion problem (Chapter 2). This chap-
ter is essential for understanding why concurrent programming is a challenge. It
covers basic concepts such as fairness and deadlock. We then ask what it means
for a concurrent program to be correct (Chapter 3). We consider several alter-
native conditions, and the circumstances one might want to use each one. We
examine the properties of shared memory essential to concurrent computation
(Chapter 4), and we look at the kinds of synchronization primitives needed to
implement highly concurrent data structures (Chapters 5 and 6).

We think it is essential that anyone who wants to become truly skilled in the
art of multiprocessor programming spend time solving the problems presented
in the first part of this book. Although these problems are idealized, they distill
the kind of thinking necessary to write effective multiprocessor programs. Most
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Preface

important, they distill the style of thinking necessary to avoid the common
mistakes committed by nearly all novice programmers when they first encounter
concurrency.

The next two-thirds describe the practice of concurrent programming. Each
chapter has a secondary theme, illustrating either a particular programming pat-
tern or algorithmic technique. At the level of systems and languages, Chapter 7
covers spin locks and contention. This chapter introduces the importance of
the underlying architecture, since spin lock performance cannot be understood
without understanding the multiprocessor memory hierarchy. Chapter 8 covers
monitor locks and waiting, a common synchronization idiom, especially in Java.
Chapter 16 covers work-stealing and parallelism, and Chapter 17 describes bar-
riers, all of which are useful for structure concurrent applications.

Other chapters cover concurrent data structures. All these chapters depend on
Chapter 9, and the reader  should read this chapter before reading the others.
Linked lists illustrate different kinds of synchronization patterns, ranging from
coarse-grained locking, to fine-grained locking, to lock-free structures (Chap-
ter 9). The FIFO queues illustrate the ABA synchronization hazard that arises
when using atomic synchronization primitives (Chapter 10), Stacks illustrate an
important synchronization pattern called elimination (Chapter 11), Hash maps
show how an algorithm can exploit natural parallelism (Chapter 13), Skip lists
illustrate efficient parallel search (Chapter 14), and priority queues illustrate
how one can sometimes weaken correctness guarantees to enhance performance
(Chapter 15).

Finally, Chapter 18 describes the emerging transactional approach to concur-
rency, which we believe will become increasingly important in the near future.

The importance of concurrency has not always been acknowledged. Here is

a quote from a 1989 New York Times article on new operating systems for the
IBM PC:

Real concurrency—in which one program actually continues to function while you
call up and use another—is more amazing but of small use to the average person.
How many programs do you have that take more than a few seconds to perform
any task?

Read this book, and decide for yourself.
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