\

BUBREENEA

(SR3ZhR)

THE ART
()/
MULTIPROCESSOR
PROGRAMMING

Bl T R A

China Machine Press

TP311/Y24

2008

SRBERRENZA

(ZR3ZhR)

Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Programming (ISBN 978-0-12-
370591-4).

Original English language edition copyrigh't © 2008 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

ISBN: 978-981-272-234-8

Copyright © 2008 by Elsevier (Singapore) Pte Ltd.

Printed in China by China Machine Press under special arrangement with Elsevier
(Singapore) Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong
SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this
Law is subject to Civil and Criminal Penalties.

FASHEICRENRR B Elsevier (Singapore) Pte Ltd. 82 ACHLbK Tll i 4L 78 b [K Bt 8 P s
AT, FRIXREHERAN (FLEFBRFITEEREGBHBKX) HRRRNEE, £27F
AIZH N, MOATE RCEERGE, ka2 i,

[BIRR, BRBR.
FHEEmE JLRETHRARIMESA

AP EICS: E=. 01-2008-3268
BHER®BE (CIP) ¥iE

ZAEEMEIEAR (FE3ChR) / () #FIF (Herlihy, M.), (LL) i#3E4F (Shavit,
N.) 2. —dbt3t: HLW Tl HihRt:, 2008.8

(24 R AS)

F4JR3C: The Art of Multiprocessor Programming

ISBN 978-7-111-24735-7
1% IO Off- I HGEE-BRERE-% V. TP332
i LA [IRCIPRAR X (2008) 451099912

HUBE Mk AR (bsi sk E 1 5 A #225 WREC4RS 100037)
TS BIRE

AL WL SLENRITEDR - BB 5L & 4T & AT
200848 A 28 1hR &8 LIk ENARI

170mm x 242mm - 33E[3k

FrifEd5-2 . ISBN 978-7-111-24735-7

EHr: 69.005%

JUBAS, A EI. R, 6, mAadRTEiEGR
Ak (010) 68326294

HIRE IS

IEE LA, TR KRR RS S T R R E A TS, (76 ERKAE A AR
A A FIRIUE T 2R, hIERAXFERES, FEEEEREERARRRIIS
+2ERLFEN, MSNE, LR, EERM LA 5EE kSR
LA, THENLER R A 2 R WAL R S RO R F B B BT £, E BT AR
M2 B EEE, ORI THRRITERE, CHETEROEE, EEFEEARE,
NEAFEME, RO EFASEE ARG R .

VAR, TEAEREBILREINHEz T, REMTHEIL LR RRSE, LV AArIFH
RHZEY ., X EIEER MRS, WMk, e LBEMRRIX
EHHEK EEREERE, ERERGBHEAR RN AZEMIRT, KESREE
KIEF I FEILR 2R RHLHERRENSB/EM DA S EREEZLE. Hit, 5
PE—HEE MU T BB R R E T EALEE F AR RAERRAHESER, i
SR, BikEENHR RS R ZE,

PUBR Tl R ek e o R IR S “HAREARF RS . B 19984 F 4k, LTy
HtH TR AR T #E. BERIMBEM L, 2L LENAWE D, &5
Pearson, McGraw-Hill, Elsevien, MIT, John Wiley & Sons Wiley, Cengage®:it: {3 4 H
MR FIEST T RAFRIATERZR, M3 F 5 E Fh 3okt Fh L& H Andrew S. Tanenbaum,
Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie Jim Gray, Afred V. Aho, John E.
Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz, William Stallings, Donald E. Knuth,
John L. Hennessy 5 K Ifi 2K) —HZBES, Lo “THREIVRHEAE" AEFRtiik, #Btigd
23], R K. KEALSCRENE, WIEAI T XEMNSE AT,

“UEHFEHEAS” (HRTESSE TENIMEERR D ED, BEANETREAMNR
HT R EREBES, S EIE T RIEME R T, B EE A
FHEHMEMEFENEE, ANELTRARBIPIERIER. L4, “HRIFEAS"
BELHIR THEMEASF, X EBEEREPR LT RFBOM, HaiF2 ek
HIERHEM S Z B, HPOMR “SHFEMAE" 184 bk 5B bk kb £ SCHEN
BB PRI,

WERITEE . MMM, —RIEE . MERER. HANEE, XSERFER
MMEEAETREMRIE. FEFEILEESHAR T 2P A AW 572 & Btk
ERBRBGAL, BE R E ST RALEM TR R AR A — A FRIBT B, AT
FEARRRERE, MRBEOERLELBIMERX &R BN EERY ., LR i
M T FN S % AR TAERR B IS T4 1E, BATHERA G LT .

H£EZM L. www.hzbook.com
B FHR{4. hzedu@hzbook.com
PR EBIE. (010) 68995264
BERMAU. R TFERRE G T E ST LERE

HREBI %5 . 100037 EFHHEE B HRF S

For my parents, David and Patricia Herlihy, and for Liuba, David, and Anna.

For my parents, Noun and Aliza, my beautiful wife Shafi, and my kids,
Yonadav and Lior, for their love and their patience, their incredible,
unbelievable, and unwavering patience, throughout the writing of this book.

Preface

This book is intended to serve both as a textbook for a senior-level undergraduate
course, and as a reference for practitioners.

Readers should know enough discrete mathematics to understand “big-O”
notation, and what it means for a problem to be NP-complete. It is helpful to
be familiar with elementary systems constructs such as processors, threads, and
caches. A basic understanding of Java is needed to follow the examples. (We
explain advanced language features before using them.) Two appendixes summa-
rize what the reader needs to know: Appendix A covers programming language
constructs, and Appendix B covers multiprocessor hardware architectures.

The first third covers the principles of concurrent programming, showing how
to think like a concurrent programmer. Like many other skills such as driving a car,
cooking a meal, or appreciating caviar, thinking concurrently requires cultivation,
but it can be learned with moderate effort. Readers who want to start program-
ming right away may skip most of this section, but should still read Chapters 2
and 3 which cover the basic ideas necessary to understand the rest of the book.

We first look at the classic mutual exclusion problem (Chapter 2). This chap-
ter is essential for understanding why concurrent programming is a challenge. It
covers basic concepts such as fairness and deadlock. We then ask what it means
for a concurrent program to be correct (Chapter 3). We consider several alter-
native conditions, and the circumstances one might want to use each one. We
examine the properties of shared memory essential to concurrent computation
(Chapter 4), and we look at the kinds of synchronization primitives needed to
implement highly concurrent data structures (Chapters 5 and 6).

We think it is essential that anyone who wants to become truly skilled in the
art of multiprocessor programming spend time solving the problems presented
in the first part of this book. Although these problems are idealized, they distill
the kind of thinking necessary to write effective multiprocessor programs. Most

vi

Preface

important, they distill the style of thinking necessary to avoid the common
mistakes committed by nearly all novice programmers when they first encounter
concurrency.

The next two-thirds describe the practice of concurrent programming. Each
chapter has a secondary theme, illustrating either a particular programming pat-
tern or algorithmic technique. At the level of systems and languages, Chapter 7
covers spin locks and contention. This chapter introduces the importance of
the underlying architecture, since spin lock performance cannot be understood
without understanding the multiprocessor memory hierarchy. Chapter 8 covers
monitor locks and waiting, a common synchronization idiom, especially in Java.
Chapter 16 covers work-stealing and parallelism, and Chapter 17 describes bar-
riers, all of which are useful for structure concurrent applications.

Other chapters cover concurrent data structures. All these chapters depend on
Chapter 9, and the reader should read this chapter before reading the others.
Linked lists illustrate different kinds of synchronization patterns, ranging from
coarse-grained locking, to fine-grained locking, to lock-free structures (Chap-
ter 9). The FIFO queues illustrate the ABA synchronization hazard that arises
when using atomic synchronization primitives (Chapter 10), Stacks illustrate an
important synchronization pattern called elimination (Chapter 11), Hash maps
show how an algorithm can exploit natural parallelism (Chapter 13), Skip lists
illustrate efficient parallel search (Chapter 14), and priority queues illustrate
how one can sometimes weaken correctness guarantees to enhance performance
(Chapter 15).

Finally, Chapter 18 describes the emerging transactional approach to concur-
rency, which we believe will become increasingly important in the near future.

The importance of concurrency has not always been acknowledged. Here is

a quote from a 1989 New York Times article on new operating systems for the
IBM PC:

Real concurrency—in which one program actually continues to function while you
call up and use another—is more amazing but of small use to the average person.
How many programs do you have that take more than a few seconds to perform
any task?

Read this book, and decide for yourself.

Acknowledgments

We would like to thank Doug Lea, Michael Scott, Ron Rivest, Tom Corman,
Michael Sipser, Radia Pearlman, George Varghese and Michael Sipser for their
help in finding the right publication venue for our book.

We thank all the students, colleagues, and friends who read our draft chap-
ters and sent us endless lists of comments and ideas: Yehuda Afek, Shai Ber,
Martin Buchholz, Vladimir Budovsky, Christian Cachin, Cliff Click, Yoav Cohen,
Dave Dice, Alexandra Fedorova, Pascal Felber, Christof Fetzer, Shafi Goldwasser,
Rachid Guerraoui, Tim Harris, Danny Hendler, Maor Hizkiev, Eric Koskinen,
Christos Kozyrakis, Edya Ladan, Doug Lea, Oren Lederman, Pierre Leone, Yossi
Lev, Wei Lu, Victor Luchangco, Virendra Marathe, John Mellor-Crummey, Mark
Moir, Dan Nussbaum, Kiran Pamnany, Ben Pere, Torvald Riegel, Vijay Saraswat,
Bill Scherer, Warren Schudy, Michael Scott, Ori Shalev, Marc Shapiro, Yotam
Soen, Ralf Suckow, Seth Syberg, Alex Weiss, and Zhenyuan Zhao. We apologize
for any names inadvertently omitted.

We thank Mark Moir, Steve Heller, and our colleagues in the Scalable Syn-
chronization group at Sun Microsystems for their incredible support during the
writing of the book.

This book offers complete code for all the examples, as well as
slides, updates, and other useful tools on its companion web page
at: http://books.elsevier.com/companions/9780123705914

Contents

Preface t
Acknowledgments ‘ vii

| Introduction I
[.1 Shared Objects and Synchronization 3

I.2 A Fable 6

|.2.1 Properties of Mutual Exclusion 8

1.2.2 The Moral 9

I.3 The Producer—Consumer Problem 10

|.4 The Readers—Writers Problem 12

I.5 The Harsh Realities of Parallelization 13

|.6 Parallel Programming I5

|.7 Chapter Notes I5

|.8 Exercises 16

I PRINCIPLES . 19
2 Mutual Exclusion 21
2.1 Time ' 21

2.2 Critical Sections 22

Contents

23

24
25
2.6
2.7
28
2.9
2.10

2-Thread Solutions

2.3.1 The LockOne Class
2.3.2 The LockTwo Class
2.3.3 The Peterson Lock

The Filter Lock
Fairness
Lamport’s Bakery Algorithm

Bounded Timestamps

Lower Bounds on the Number of Locations

Chapter Notes

Exercises

3 Concurrent Objects

3.1
3.2
33

34

35

3.6

37

38

Concurrency and Correctness
Sequential Objects

Quiescent Consistency
3.3.1 Remarks

Sequential Consistency
34.1 Remarks

Linearizability
3.5.1 Linearization Points
3.5.2 Remarks

Formal Definitions

3.6.1 Linearizability

3.6.2 Compositional Linearizability
3.6.3 The Nonblocking Property

Progress Conditions
3.7.1 Dependent Progress Conditions

The Java Memory Model

3.8.1 Locks and Synchronized Blocks
3.8.2 Volatile Fields

3.8.3 Final Fields

24
25
26
27

28
31
31
33
37
40
4]

45
45
48

49
51

51
52

54
55
55

55
57
57
58

59
60

6l
62
63
63

3.9 Remarks
3.10 Chapter Notes

3.1l Exercises

4 Foundations of Shared Memory
4.1 The Space of Registers

4.2 Register Constructions
4.2.1 MRSW Safe Registers
422 A Regular Boolean MRSW Register
423 A Regular M-Valued MRSW Register
424 An Atomic SRSW Register
4.2.5 An Atomic MRSW Register
42.6 An Atomic MRMW Register

4.3 Atomic Snapshots
4.3.1 An Obstruction-Free Snapshot
4.3.2 A Wait-Free Snapshot
4.3.3 Correctness Arguments

4.4 Chapter Notes

4.5 Exercises

5 The Relative Power of Primitive
Synchronization Operations

5.1 Consensus Numbers
5.1.1 States and Valence

5.2 Atomic Registers

5.3 Consensus Protocols

5.4 FIFO Queues

5.5 Multiple Assignment Objects

5.6 Read—Modify—Write Operations
5.7 Common2 RMW Operations

5.8 The compareAndSet () Operation
5.9 Chapter Notes '

5.10 Exercises

Contents

64
65
66

71
72

77
78
78
79
8l
82
85

87
87
88
90

93
94

99

100
101

103
106
106
110
112
114
116
17
118

xii Contents

6 Universality of Consensus

6.1
6.2
6.3
6.4
6.5
6.6

Introduction

Universality

A Lock-Free Universal Construction
A Wait-Free Universal Construction
Chapter Notes

Exercises

I I PRACTICE

7 Spin Locks and Contention

7.1
72
7.3
74
7.5

7.6
77

7.8

7.9

7.10
7.11

Welcome to the Real World
Test-And-Set Locks

TAS-Based Spin Locks Revisited
Exponential Backoff

Queue Locks

7.5.1 Array-Based Locks
752 The CLH Queue Lock
7.5.3 The MCS Queue Lock

A Queue Lock with Timeouts

A Composite Lock
7.7.1 A Fast-Path Composite Lock

Hierarchical Locks
7.8.1 A Hierarchical Backoff Lock
7.8.2 A Hierarchical CLH Queue Lock

One Lock To Rule Them All
Chapter Notes

Exercises

8 Monitors and Blocking Synchronization

8.1

Introduction

125
125
126
126
130
136
137

139

141
141
144
146
147

149
150
151
154

157

159
165

167
167
168

173
173
174

177
177

8.2

83

8.4
8.5
8.6
8.7

Monitor Locks and Conditions
8.2.1 Conditions
8.2.2 The Lost-Wakeup Problem

Readers—Writers Locks
8.3.1 Simple Readers—Writers Lock
8.3.2 Fair Readers—Writers Lock

Our Own Reentrant Lock
Semaphores
Chapter Notes

Exercises

9 Linked Lists: The Role of Locking

9.1
9.2
9:3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Introduction

List-Based Sets

Concurrent Reasoning
Coarse-Grained Synchronization
Fine-Grained Synchronization
Optimistic Synchronization

Lazy Synchronization
Non-Blocking Synchronization
Discussion

Chapter Notes

Exercises

Contents

10 Concurrent Queues and the ABA Problem

10.1 Introduction

10.2 Queues

10.3 A Bounded Partial Queue

10.4 An Unbounded Total Queue

10.5 An Unbounded Lock-Free Queue

10.6 Memory Reclamation and the ABA Problem

10.6.1 A Naive Synchronous Queue

xiii

178
179
181

183
184
185

187
189
189
190

195
195
196
198
200
201
205
208
213
218
219
219

223
223
224
225
229
230

233
237

Xiv Contents

10.7
10.8
10.9

Dual Data Structures
Chapter Notes

Exercises

Il Concurrent Stacks and Elimination

NI
1.2
1.3
1.4

.5
1.6

Introduction
An Unbounded Lock-Free Stack
Elimination

The Elimination Backoff Stack
I'1.4.1 A Lock-Free Exchanger
I'1.4.2 The Elimination Array

Chapter Notes

Exercises

12 Counting, Sorting, and Distributed
Coordination

12.1
12.2
12.3

2.4
12.5

12.6
12.7
12.8

12.9
12.10

Introduction
Shared Counting

Software Combining

12.3.1 Overview

12.3.2 An Extended Example

12.3.3 Performance and Robustness

Quiescently Consistent Pools and Counters

Counting Networks

12.5.1 Networks That Count

12.5.2 The Bitonic Counting Network
12.5.3 Performance and Pipelining

Diffracting Trees
Parallel Sorting

Sorting Networks
12.8.1 Designing a Sorting Network

Sample Sorting

Distributed Coordination

238
241
241

245
245
245
248

249
249
251

255
255

259
259
259

260
261
267
269

269

270
270
273
280

282

286

286
287

290
291

12.11
12.12

Contents

Chapter Notes

Exercises

13 Concurrent Hashing and Natural
Parallelism

13.1
13.2

13:3

134

13.5
13.6

Introduction

Closed-Address Hash Sets

[3.2.1 A Coarse-Grained Hash Set
13.2.2 A Striped Hash Set

[3.2.3 A Refinable Hash Set

A Lock-Free Hash Set

13.3.1 Recursive Split-Ordering

13.3.2 The BucketList Class

13.3.3 The LockFreeHashSet<T> Class

An Open-Addressed Hash Set

13.4.1 Cuckoo Hashing

13.4.2 Concurrent Cuckoo Hashing

13.4.3 Striped Concurrent Cuckoo Hashing
13.44 A Refinable Concurrent Cuckoo Hash Set

Chapter Notes

Exercises

14 Skiplists and Balanced Search

14.1
14.2
14.3

14.4

14.5
14.6
14.7

Introduction
Sequential Skiplists

A Lock-Based Concurrent Skiplist
14.3.1 A Bird's-Eye View
14.3.2 The Algorithm

A Lock-Free Concurrent Skiplist
144.1 A Bird's-Eye View
14.42 The Algorithm in Detail

Concurrent Skiplists
Chapter Notes

Exercises

XV

292
293

299
299

300
302
303
305

309
309
312
313

316
316
318
322
324

325
326

329
329
329

331
331
333

339
339
341

348
348
349

Xvi Contents

15 Priority Queues

15.1 Introduction
15.1.1 Concurrent Priority Queues

15.2 An Array-Based Bounded Priority Queue
15.3 A Tree-Based Bounded Priority Queue

15.4 An Unbounded Heap-Based Priority Queue
154.1 A Sequential Heap
154.2 A Concurrent Heap

15.5 A Skiplist-Based Unbounded Priority Queue
I5.6 Chapter Notes

5.7 Exercises

16 Futures, Scheduling, and Work Distribution
16.1 Introduction
16.2 Analyzing Parallelism
16.3 Realistic Multiprocessor Scheduling

16.4 Work Distribution
16.4.1 Work Stealing
16.4.2 Yielding and Multiprogramming

16.5 Work-Stealing Dequeues
16.5.1 A Bounded Work-Stealing Dequeue
16.5.2 An Unbounded Work-Stealing DEQueue
16.5.3 Work Balancing

16.6 Chapter Notes

16.7 Exercises

17 Barriers
7.1 Introduction
17.2 Barrier Implementations
17.3 Sense-Reversing Barrier
7.4 Combining Tree Barrier
17.5 Static Tree Barrier

17.6 Termination Detecting Barriers

351

351
351

352
353

355
356
357

363
366
366

369
369
375
378

381
38l
381

382
383
386
390

392
392

397
397
398
399
401
402
404

