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Foreword

Most textbooks written in our day have a short half-life. Published to meet the
demands of a lucrative but volatile market, inspired by the table of contents of
some out-of-print classic, garnished with multicolored tables, enhanced by nut-
shell summaries, enriched by exercises of dubious applicability, they decorate the
shelves of college bookstores come September. The leftovers after Registration
Day will be shredded by Christmas, unwanted even by remainder bookstores. The
pageant is repeated every year, with new textbooks on the same shelves by other
authors (or a new edition if the author is the same), as similar to the preceding as
one can make them, short of running into copyright problems.

Every once in a long while, a textbook worthy of the name comes along; invari-
ably, it is likely to prove aere perennius: Weber, Bertini, van der Waerden, Feller,
Dunford and Schwartz, Ahlfors, Stanley.

The mathematical community professes a snobbish distaste for expository writ-
ing, but the facts are at variance with the words. In actual reality, the names of
authors of the handful of successful textbooks written in this century are included
in the list of the most celebrated mathematicians of our time.

Only another textbook writer knows the pains and the endless effort that goes
into this kind of writing. The amount of time that goes into drafting a satisfactory
exposition is always underestimated by the reader. The time required to complete
one single chapter exceeds the time required to publish a research paper. But far
from wasting his or her time, the author of a successful textbook will be amply
rewarded by a renown that will spill into the distant future. History is more likely
to remember the name of the author of a definitive exposition than the names of
many a research mathematician.

I find it impossible to predict when Richard Stanley’s two-volume exposition
of combinatorics may be superseded. No one will dare try, let alone be able, to
match the thoroughness of coverage, the care for detail, the definitiveness of proof,
the elegance of presentation. Stanley’s book possesses that rarest quality among
textbooks: you can open it at any page and start reading with interest without
having to hark back to page one for previous explanations.




iv Foreword

Combinatorics, which only thirty years ago was a fledgling among giants, may
well be turning out to be a greater giant, thanks largely to Richard Stanley’s
work. Every one who deals with discrete mathematics, from category theorists to

molecular biologists, owes him a large debt of gratitude.

Gian-Carlo Rota
March 21, 1998



Preface

This is the second (and final) volume of a graduate-level introduction to enu-
merative combinatorics. To those who have been waiting twelve years since the
publication of Volume 1, I can only say that no one is more pleased to see Volume
2 finally completed than myself. I have tried to cover what I feel are the fundamen-
tal topics in enumerative combinatorics, and the ones that are the most useful in
applications outside of combinatorics. Though the book is primarily intended to be
a textbook for graduate students and a resource for professional mathematicians, I
hope that undergraduates and even bright high-school students will find something
of interest. For instance, many of the 66 combinatorial interpretations of Catalan
numbers provided by Exercise 6.19 should be accessible to undergraduates with a
little knowledge of combinatorics.

Much of the material in this book has never appeared before in textbook form.
This is especially true of the treatment of symmetric functions in Chapter 7. Al-
though the theory of symmetric functions and its connections with combinatorics
is in my opinion one of the most beautiful topics in all of mathematics, it is a
difficult subject for beginners to learn. The superb book by Macdonald on sym-
metric functions is highly algebraic and eschews the fundamental combinatorial
tool in this subject, viz., the Robinson—Schensted~Knuth algorithm. I hope that
Chapter 7 adequately fills this gap in the mathematical literature. Chapter 7 should
be regarded as only an introduction to the theory of symmetric functions, and not
as a comprehensive treatment.

As in Volume 1, the exercises play a vital role in developing the subject. If in
reading the text the reader is left with the feeling of “what’s it good for?” and is
not satisfied with the applications presented there, then (s)he should turn to the
exercises. Thanks to the wonders of electronic word processing, I found it much
easier than for Volume 1 to assemble a wide variety of exercises and solutions.

I am grateful to the many persons who have contributed in a number of ways
to the improvement of this book. Special thanks go to Sergey Fomin for his many
suggestions related to Chapter 7, and especially for his masterful exposition of
the difficult material of Appendix 1. Other persons who have carefully read por-
tions of earlier versions of the book and who have offered valuable suggestions
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are Christine Bessenrodt, Francesco Brenti, Persi Diaconis, Wungkum Fong, Phil
Hanlon, and Michelle Wachs. Robert Becker typed most of Chapter 5, and Tom
Roby and Bonnie Friedman provided invaluable TEX assistance. The following
persons at Cambridge University Press and TechBooks have been a pleasure to
work with throughout the writing and production of this book: Catherine Felgar,
Shamus McGillicuddy, Andrew Wilson, and especially Lauren Cowles, whose
patience and support is greatly appreciated. The following additional persons
have made at least one significant contribution that is not explicitly mentioned
in the text, and I regret if I have inadvertently omitted anyone else who belongs
on this list: Christos Athanasiadis, Anders Bjomer, Mireille Bousquet-Mélou,
Bradley Brock, David Buchsbaum, Emeric Deutsch, Kimmno Eriksson, Dominique
Foata, Ira Gessel, Curtis Greene, Patricia Hersh, Martin Isaacs, Benjamin Joseph,
Martin Klazar, Donald Knuth, Darla Kremer, Valery Liskovets, Peter Littelmann,
Ian Macdonald, Alexander Mednykh, Thomas Miiller, Andrew Odlyzko, Alexan-
der Postnikov, Robert Proctor, Douglas Rogers, Lou Shapiro, Rodica Simion, Mark
Skandera, Louis Solomon, Dennis Stanton, Robert Sulanke, Sheila Sundaram,
Jean-Yves Thibon, and Andrei Zelevinsky.

Richard Stanley
Cambridge, Massachusetts
March 1998

The paperback printing contains addenda to some of the exercises in a new section
on page 583. The exercises in question are indicated by * in the main text.

p- 124, Exercise 5.28
p- 136, Exercise 5.41(j)

p. 144, Exercise 5.53

p. 151, Exercise 5.62(b)

p- 231, Exercise 6.25(i)

p. 232, Exercise 6.27(c)

p. 264, Exercise 6.19(iii)

p. 265, Exercise 6.19(mmm)
p. 272, Exercise 6.33(c)

p- 279, Exercise 6.56(c)

p- 467, Exercise 7.55(b)

p. 334, Exercise 7.74

p- 539, Exercise 7.85



Notation

The notation follows that of Volume 1, with the following exceptions.

® The coefficient of x” in the power series F(x) is now denoted [x"]F (x). This
notation is generalized in an obvious way to such situations as

[x"y™] E aijx'y’ = amn
i
x" xi
—_ E a;i— = Q.
n! - i!
]

¢ The number of inversions, number of descents, and major index of a permutation
(or more generally of a sequence) w are denoted inv(w), des(w), and maj(w),
respectively, rather than i(w), d(w), and «((w). Sometimes, especially when we
are regarding the symmetric group &, as a Coxeter group, we write £(w) instead
of inv(w).

The following notation is used for various rings and fields of generating functions.
Here K denotes a field, which is always the field of coefficients of the series below.
All Laurent series and fractional Laurent series are understood to have only finitely
many terms with negative exponents.

K{x] ring of polynomials in x
K(x) field of rational functions in x (the quotient field of K[x])
K([x]] ring of formal (power) series in x

K((x)) field of Laurent series in x (the quotient field of K[[x]])
Kagllx]] ring of algebraic power series in x over K(x)

Kag((x)) field of algebraic Laurent series in x over K (x)
K™[[x]] ring of fractional power series in x



X

K™ ((x))
K(X)

Keat (X))

K (X))
Kag (X))

Notation

field of fractional Laurent series in x (the quotient field of X fra[[x]])
ring of noncommutative polynomials in the alphabet (set of variables)

X
ring of rational (= recognizable) noncommutative series in the al-

phabet X
ring of formal (noncommutative) series in the alphabet X
ring of (noncommutative) algebraic series in the alphabet X



Enumerative Combinatorics

This is the second of a two-volume basic introduction to enumerative combinatorics
at a level suitable for graduate students and research mathematicians.

This volume covers the composition of generating functions, trees, algebraic
generating functions, D-finite generating functions, noncommutative generating
functions, and symmetric functions. The chapter on symmetric functions provides
the only available treatment of this subject suitable for an introductory graduate
course and focusing on combinatorics, especially the Robinson—Schensted—Knuth
algorithm. Also covered are connections between symmetric functions and rep-
resentation theory. An appendix (written by Sergey Fomin) covers some deeper
aspects of symmetric function theory, including jeu de taquin and the Littlewood—
Richardson rule.

As in Volume 1, the exercises play a vital role in developing the material. There
are over 250 exercises, all with solutions or references to solutions, many of which
concern previously unpublished results.

Graduate students and research mathematicians who wish to apply combina-
torics to their work will find this an authoritative reference.

Richard P. Stanley is Professor of Applied Mathematics at the Massachusetts
Institute of Technology. He has held visiting positions at UCSD, the University of
Strasbourg, California Institute of Technology, the University of Augsburg, Tokai
University, and the Royal Institute of Technology in Stockholm. He has published
over 100 research papers in algebraic combinatorics. In addition to the two-volume
Enumerative Combinatorics, he has published one other book, Combinatorics and
Commutative Algebra (Birkhiuser; second edition, 1997). He is a fellow of the
American Academy of Arts and Sciences, a member of the National Academy of
Sciences, and a recipient of the Pélya Prize in Applied Combinatorics awarded by
the Society for Industrial and Applied Mathematics.
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5

Trees and the Composition of
Generating Functions

5.1 The Exponential Formula

If F(x) and G(x) are formal power series with G(0) = 0, then we have seen (after
Proposition 1.1.9) that the composition F(G(x)) is a well-defined formal power
series. In this chapter we will investigate the combinatorial ramifications of power
series composition. In this section we will be concerned with the case where F(x)
and G(x) are exponential generating functions, and especially the case F(x) = ¢*.

Let us first consider the combinatorial significance of the product F(x)G(x) of
two exponential generating functions

Fx =Y fn=

n>0

Ge) =Y g~

n>0

Throughout this chapter X denotes a field of characteristic 0 (such as C with some
indeterminates adjoined). We also denote by E r(x) the exponential generating
function of the function f : N — K, i.e.,

Ef@) =3 fin—.

n>0

5.1.1 Proposition. Given functions f,g:N — K, define a new function
h:N — K by the rule

h(#X) =) f(#S)g(HT), (5.1)

.7

where X is a finite set, and where (S, T) ranges over all weak ordered partitions
of X into two blocks, i.e, SNT =@ and SUT = X. Then

En(x) = Ef(x)Ez(x). (5.2)
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Proof. Let#X = n. There are (}) pairs (S, T) with #S = k and #T =n — k, so

hny =" (Z)f(k)g(n — ).

k=0
From this (5.2) follows. ]

One could also prove Proposition 5.1.1 by using Theorem 3.15.4 applied to the
binomial poset B of Example 3.15.3.

We have stated Proposition 5.1.1 in terms of a certain relationship (5.1) among
functions f, g, and A, but it is important to understand its combinatorial signifi-
cance. Suppose we have two types of structures, say @ and £, which can be put on
a finite set X. We assume that the allowed structures depend only on the cardinality
of X. A new “combined” type of structure, denoted o U $, can be put on X by
placing structures of type o and 8 on subsets S and T, respectively, of X such that
SUT = X,85NT = @.If f(k) (respectively g(k)) are the number of possible
structures on a k-set of type o (respectively, B), then the right-hand side of (5.1)
counts the number of structures of type o U 8 on X. More generally, we can assign
a weight w(I') to any structure I" of type o or B. A combined structure of type
a U B is defined to have weight equal to the product of the weights of each part. If
f (k) and g(k) denote the sums of the weights of all structures on a k-set of types «
and B, respectively, then the right-hand side of (5.1) counts the sum of the weights
of all structures of type ¢ U 8 on X.

5.1.2 Example. Given an n-element set X, let A(n) be the number of ways to
split X into two subsets Sand T with SUT = X, SN T = @, and then to linearly
order the elements of S and to choose a subset of T. There are f(k) = k! ways
to linearly order a k-element set, and g(k) = 2* ways to choose a subset of a
k-element set. Hence

Zh(n):_'; _ (Zn!%) (Zz%)

n>0 n>0 n>0

1—x

Proposition 5.1.1 can be iterated to yield the following result.

5.1.3 Proposition. Fix k € P and functions fi, f2,..., fx : N > K. Define a
new function h : N — K by

h#S) = Y fitkT) L#T) - - - fuHT),
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where (T, ..., Ty) ranges over all weak ordered partitions of S into k blocks,
ie, Tv,..., Ty are subsets of S satisfying: (i) T, N T; = B ifi # j, and (ii)
TIU-”UTk=S. Then

k
Enx) = []Esn0).
i=1

We are now able to give the main result of this section, which explains the combi-
natorial significance of the composition of exponential generating functions.

5.1.4 Theorem (The Compositional Formula). Given functions f : P — K and
g : N — K with g(0) = 1, define a new function h : N — K by

h(#S) = Z f@#B)f(#B2)--- f(#Bi)gk), #S >0, (53)
n={B1,... BJeTI(S)

h) =1,

where the sum ranges over all partitions (as defined in Section 1.4) m =
{By, ..., Bx) of the finite set S. Then

Ep(x) = Eg(Ef(x)).
(Here E ¢(x) = an L J(n)x"/n!, since f is only defined on positive integers.)

Proof. Suppose #S = n, and let h;(n) denote the right-hand side of (5.3) for
fixed k. Since By, ..., By are nonempty, they are all distinct, so there are k! ways
of linearly ordering them. Thus by Proposition 5.1.3,

Ep (x) = &E OO~ (5.4

Summing (5.4) over all k£ > 1 yields the desired result. O

Theorem 5.1.4 has the following combinatorial significance. Many structures
on a set, such as graphs or posets, may be regarded as disjoint unions of their
connected components. In addition, some additional structure may be placed on
the components themselves, e.g., the components could be linearly ordered. If
there are f(j) connected structures on a j-set and g(k) ways to place an additional
structure on k components, then A(n) is the total number of structures on an zn-set.
There is an obvious generalization to weighted structures, such as was discussed
after Proposition 5.1.1.

The following example should help to elucidate the combinatorial meaning of
Theorem 5.1.4; more substantial applications are given in Section 5.2.
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1

Figure 5-1. A circular arrangement of lines. \

5.1.5 Example. Let h(n) be the number of ways for n persons to form into
nonempty lines, and then to arrange these lines in a circular order. Figure 5-1 shows
one such arrangement of nine persons. There are f(j) = j! ways to linearly order
J persons, and g(k) = (k — 1)! ways to circularly order k > 1 lines. Thus

Ef(x)= n! i'- =

nx1 l—x

Ex)=1+) (n— 1)'— =1+log(1-x)7",

n>1

SO

Ey(x) = Eg(Es(x))

-1
=1+log(1~— ad )
1—x

=1+ log(1 —2x)~! —log(1 — x)~!

=14+ "—)n- 1)'-—

n>1

whence h(n) = (2" — 1)(n — 1)!. Naturally, such a simple answer demands a simple
combinatorial proof. Namely, arrange the n persons in a circle in (n — 1)! ways. In
each of the n spaces between two persons, either do or do not draw a bar, except
that at least one bar must be drawn. There are thus 2" — 1 choices for the bars.
Between two consecutive bars (or a bar and itself if there is only one bar) read
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Figure 5-2. An equivalent form of Figure 5-1.

the persons in clockwise order to obtain their order in line. See Figure 5-2 for this
method of representing Figure 5-1.

The most common use of Theorem 5.1.4 is the case where g(k) = 1 for all k.
In combinatorial terms, a structure is put together from “connected” components,
but no additional structure is placed on the components themselves.

5.1.6 Corollary (The Exponential Formula). Given afunction f : P — K, define
a new function h :N — K by

h(#S) = Z S@HB)f#By)--- f(#B), #S5>0, (5.5)
w=(B),... BeJeTI(S)

h(0) = 1.
Then
Ep(x) = exp E(x). (5.6)

Let us say a brief word about the computational aspects of equation (5.6). If the
function f(n) is given, then one can use (5.5) to compute A(n). However, there is
a much more efficient way to compute h(n) from f(n) (and conversely).

5.1.7 Proposition. Ler f:P — K and h:N — K be related by Ex(x) =
exp E s(x) (so in particular h(0) = 1). Then we have for n > O the recurrences

n

hn+1) =) (:)h(k)f(n +1-k), (5.7)

k=0

s+ =hon+ =3 (} a0 o+ 1- (58)
- k=1




