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Preface

This book is based on lectures given by the authors to first-year graduate
students at the Umiversity of Toronto and the University of Guelph. Our
primary aim is to teach those multivariate techniques applicable to the data
available in such varied disciplines as forestry, biology, medicine, and
education. Theoretical details have accordingly been kept to a bare mini-
mum. A knowledge of matrix notation and manipulations will be helpful,
and Chapter 1 should assist readers deficient in this area. The reader is,
however, expected to have sufficient knowledge of elementary univariate
theory. '

Our emphasis is on methods in current use in multivariate statistics. For
each new topic we present not only a description of the problem and its
solution, but also several worked examples, chosen from many different
fields. Each chapter ends with a discussion of the computer packages
available and additional worked examples.

The likelihood ratio approach has been adopted for tests of the signifi-
cance of a given hypothesis, and Roy’s union-intersection principle and
Bonferoni’s inequalities for confidence intervals are introduced. For each
test statistic, formulas for the observed significance levels are given. The
percentage points needed to calculate confidence intervals appear as Ap-
pendixes.

Chapters 1 and 2 provide a review of the necessary matrix theory and
statistical theory; Chapter 1 also contains a discussion of the SAS matrix
procedures for calculating eigenvalues, eigenvectors, and the generalized
inverse of a matrix. Chapters 3-7 are multivariate generalizations of uni-
variate procedures for r-tests, analysis of variance, and multiple regression.
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Chapter 12 gives tests of the assumptions required for these multivariate
procedures to be valid, including tests for equality of covariance and
independence. It is Chapters 8—11 that contain strictly multivariate proce-
dures, beginning with discriminant analysis. Methods for finding functions
that will discriminate among populations or groups are discussed, and
procedures to reduce the number of characteristics necessary for discrimina-
tion are given in a section on stepwise discriminant analysis. Chapters 9-11
then introduce dimension-reducing procedures, including canonical correla-
tion, which investigates the correlation between linear combinations of
variables, and principal component analysis, which reduces the set of
measured characteristics to fewer components. For example, 20 measure-
ments on bulls might be reduced to two or three components for size and
shape. Factor analysis performs the same reduction but assuming that the
observations have an underlying structure; this method is often used to
group responses to questionnaires and psychological tests.

Advanced topics are given toward the end of a chapter. For example,
Chapter 3 covers the problem of incomplete data and tests for shift in the
mean. The core material may be used in a one-semester course in applied
multivariate statistics at the senior or first-year graduate level. Two semes-
ters are required to cover the text in its entirety.

This book is dedicated to Jagdish Bahadur Srivastava and Ivy May
Carter.
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Chapter 1
Some Results on Matrices

1.1 Notation and Definitions

Suppose that a,,, a,,.....a,, is a collec(ion of pg real numbers. The rectan-

gular array of these elements

apy ap ot Ay,
a; d4ap a,
\dp1 dp2 Apq

consisting of p rows and g columns, is called a p X ¢ matrix. We write
A=(a,;): pX g, wherea,, is the element in the ith row and jth column. For
example, the matrix
_(6 8 9
4 ( 1 3 5)

is a 2X3 matrix with a,, =6, a,,=8,a,;=9,a,,=1.a,;=3,a,;=5.
We shall now define some special matrices that will be used later.

Null Matrix If all the elements of 4 are zero, then A is said to be a zero or
null matrix, denoted 0,, or, if there is no confusion, simply 0.

That 1s,
0 0!
0,={0 0].
0 o0

Square Matrix If p = ¢, then A is said to be a square matrix of order p.
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Column Vector If g =1, then 4 is said to be a p-column vector, or simply a
p-vector, and the vector will be written

a

For example, the 3-vector with entries 6, 8, and 9 is written

i

Row Vector If p =1, then A is said to be a g-row vector. A will be written

For example, the 4-row vector a’ with entries 2, 4, 6, and 8 is written
a’'=(2,4,6,8).

Lower Triangular Matrix A square matrix with all elements above the main
diagonal equal to zero is called a lower triangular matrix.

Examples are

2 0 0 2 0 0
(8 2 o) (1) (o : 0).
V10 9 6 0 5 0

Upper Triangular Matrix A square matrix with all elements below the main
diagonal equal to zero is called an upper triangular matrix.

Diagonal Matrix A square matrix 4 with the off-diagonal elements equal to
zero is called a diagonal matrix. If the diagonal entries are g ... ., a,, then
A is sometimes written D, or diag(a,,..., a,).

For example, if a, =1, ¢, =2, and a, =4, then

1 0 0)
0 2 0f.

0 0 4

A=

Identitv Matrix If 4 is a diagonal p X p matrix with all p diagonal entries
equal to 1, then A is called an identity matrix, denoted /,.
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For example,

10 1 0 0
1,=[1], ]2:(0 1)~ L=10 1 0].
0 0 1/

Transpose Matrix If the rows and columns of a matrix are interchanged.
the resulting matrix is called the transpose of A4, denoted A’. Thus if

A=(a,): pXgq, then A"=(a;):qXx p.

For example, if

then

1 4
=12-5].
3 6

Symmetric Matrix A square matrix is said to be symmetric if 4 = A4".

3
51.
6

Skew Symmetric Matrix A matrix 4 is said to be skew symmetric if 4 =
— A’. If A is skew symmetric, then all the diagonal entries are zero.

Examples of symmetric matrices are

53 ok 2

3

L I SO 08 )

Examples are
0 0 1 0 =1 =2
0 1 .
(_1 o) (_0 0 2), (1 0 3).

1.2 Matrix Operations

Sometimes, it is convenient to represent a matrix A as

where A, is an m; X m, submatrix of A4 (i, j=1,2). A submatrix of 4 is a
matrix obtained from 4 by deleting certain rows and columns. The above
representation of A is called a partitioned matrix. If there are more than two
partitions of rows (or columns) we can write 4= (A,;), where Ay is the
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submatrix of A in the ith row and jth column partition. For example, if

An:(l 2)~ A12:(2)~ Ay =(6,7), Ay =(8),

3 4 3
then
1 2'2
A= ( 3_4.3 )
6 718
Another type of partitioned matrix can be written
A |
A= = I._’ 4 Az )
Ay

For example, if
51
A,,:(; 2. An=te). A3=(3).

then

Let A:mXn and B: p X g be two matrices. The usual addition of two
matrices i1s defined only if the matrices are of the same order. Thus if
A=(a,;): pXqand B=(b,): p X q. then their suri is delined by

A+B=(a, +bh,):pXq.
The usual multiplication of 4 by B is defined only if the number of columns
of A equal to the number of rows of B. Thus if A=(a,,): m <X n and

B =(b,,): nXgq. then the product of 4 and B (denoted AB) is defined as an
m X g matrix AB=C =(c,,), where

;= Ea,,\h,\,l. F'=hy2aess m, J=lduen q.
k=1
The following results can be obtained from the above definitions:
- L (A+B)Y=A"+B. (A+B+C)Y=A"+B"+(C";
. (ABY =B'A’" . (ABC)y=C'B’A’;
. A(B,+ B,)= AB, + AB,: and
iv. 3X_ 4B = At B,).

Exarples Let

A:(i g ;) 82(1(7) lf; 13) C:(? ;)
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Then
1 4 7 10
l.A=|2 s5|.B=|8 11}|;
3 6 9 12
([ 8 10 12)_
2'A+B—(l4 16 18/’
8 14
3. (A+BY=A+B=[10 16|;
12 18
(3 1\(1 2 3\_[7 11 15
. CA‘(I 2)(4 5 6)—(9 12 15)'

Note that AC is not defined.
We now define a few more matrices.

Semiorthogonal Matrix A matrix 4: p~X g is said to be semiorthogonal if
AA'=1,(q=p). -

Examples are

(0.5,0.5,0.5,0.5), (' ¢ 0),

(OO—])
0O 1 0 1 0 0/

Orthogonal Matrix A square matrix 4 is said to be orthogonal if A4"= 1.

Idempotent Matrix A square matrix A is said to be idempotent if A= 42

S A P I |

Kroneck >r Product Let A: mXn and B: p X g be two matrices. Then the
Krone¢cker product (or direct product) of 4 and B is defined as the
mp X nq matrix A®B = (a,,B), where A= (a;)).

Examples are

L

Wl tJ|—

For example, for

then

A®B =

O WO &
w ol O
S —lOo N
—_—0OIN O .
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1.3 Determinants

The determinant of a square matrix 4 = (a;):nXn is defined as

41=2(=D"" 1 a, ,
a Jj=1

where £ denotes the summation over the distinct permutations a of the
numbers 1,2,...,n and N(a) is the total number of inversions of a permuta-
tion. An inversion of a permutation @ = (a,, a,,...,«, ) is an arrangement of
two indices such that the larger index comes after the smaller inde <. For
example, N(2,1,4,3)=1+ N(1,2,4,3) =2+ N(1,2,3,4) =2 b:cause
N(1,2,3,4)=0. Similarly, N(4,3,1,2) =1+ N(3,4,1,2) =3+ N(3,1,2, §) =5.
The above expression of a determinant is denoted | 4| or det 4. If | A] is
real, then | 4|, denotes the positive value of | 4|. Note that

4= (-1)""a,., ,2( D"a, =4

Examples

: =2X5—1X1=
1 : 5‘ 2X5 1=9,
2. ’2 ‘=4—1:3.

The following are immediate consequences of the definition of | A|.

i. If the ith row (or column) is multiplied by a constant ¢, the value of
the determinant is multiplied by ¢ Hence |c4| =c"| 4| if 4 is an
n X n matrix.

i. If any two rows (or columns) of a matrix are interchanged, the sign
of the determinant is changed. Hence if two rows (or columns) of a
matrix are identical, the value of the determinant is zero.

iii. The value of the determinant is unchanged if in the ith row (or
column) a cth multiple of the jth row (or column) is added. Hence
the value of the determinant is zero if a row (or column) i: a linear
combination of other rows (or columns).

iv. |1,|=1,|D,| =la,.

V. |AB|—|A||B||fA poandB pXp, :

. vi.r|AA’|>0
Vii.
I A Ci_ A C|_|A 0

. where A and B are square matrices.
" \viit |1, + AB| = |I,+ BA|, where 4 and B are p X q and ¢ X p matrices.

™
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1.3.1 Cofactors of a Square Matrix

Let A be the submatrix of A4: n X n obtained by deleting the ith row and
thejthcolumn of 4. Let m,, = | 4|. Then ¢, (A)=(—1) V| 4| =(—1)"m,,
is known as the cofacror of a, je Note that @

n n

|A| = 2 Clj(A)aij: 2 Cij(A)a,,v

F=1 i=1

n n
0= 2 c,a,,, k#i, 0= 3 c a,. j*k.
Jj=1 i=1

Example Let

1 6 5 7
16 -9 10 12
A= 3 7 8 10
2 5 =9 1]

and cy3(A) = (—1)*"?| 4%

1.3.2 Minor, Principal Minor, and Trace of a Matrix

Let A{"-~ ) be the submatrix of 4 : m X n obtained by taking the i, i5,....i,
rows and /,, j;....,J, columns; note that it is a square submatrix of A. Then
|A§"j' )| is know as a minor of order t. If i, = j,, i, = jy...., i,= j, thenit
is known as a principal minor of order 1.

7 For any square matrix, the sum of all principal minons of order ¢ is called
the 7th trace of A. Symbolically, tr,(4) =2 |A:’,'I
Thus, when 1 =1, we have t_r.,-A t.rA p T N

Example Let A be the 4X4 matrix given in Section 1.3.1. Let i, =2,
i,=3,j,=2,and j,=3. Then
9 10 _ o
g3=(3 5).  AB=1 ag=s

3 '9] is a principal minor of order 2. The sum of all principal minors of

and |;
order 2

0] |1 6], I 7]L[8 10|_,_
Sva 9M3 ‘ ,5 11 +|2 1 +l9 11|~ 4= n(4),

and tryA=1+9+8+11.
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From the definition of a determinant, we get the following property of a

determinant.
Let A be a square matrix of order n. Then the determinant |4+ AJ, |isa
polynomial of degree n in A and can be written

n
|A+AlL|= 3 Ntr, ,A, where trpA=1.

=1

IfA,,A,,...,A, denote the roots of this polynomial, then

tr(A4)= é?x,-.

i=1

t(A)=AA,+AA;+ -+, A

n—1"%n>

tr,(A)=XAy -, = 4]
We shall write tr 4 for tr, A. It can easily be verified that

i. trAB=1trBA,

. trABC =trBCA= trCAB,

. rA=trAd’,

iv. t((A+ B)=1trA+1trB,

V. t(A+B+C)=trA+trB+1trC,
vio tf(Zk_, A )=32%_(tr4,), and
vil. trc=c, where ¢ is a scalar.

1.4 Rank of a Matrix

An m X n matrix A4 is said to be of fank r, denoted p( 4) = r, if and only if
(iff) there is at least one nonzero minor of order r from A and all of the
minors of order r + 1 are zero. It is easy to establish the following:

i. p(A)=0iff A=0.
ii. If A is an mXn matrix and A#0, then 1=<p(A4)=<min(m,n).
Further, p(A4)=p(A4'). )
iii. max(p(A), p(B))<p(A:B)<min(n,p(A)+p(B)), where n is the
number of rows in A.
iv.
0 Q)_ (Q 0)
= =p(R)+ .
p(R ol =Plo =& p(R)+p(Q)
v. p(AB)=min(p(A), p(B)).
wir p(AB)=p(A) if p(B)= p, where B: pX g and p<gq.

Note that p(A) need not be equal to p(A4?). For example, if

(1 —1)
A_(l -1)



