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... FOREWORD

Some of us have been fortunate to have worked with bioluminescent systems for part
or all of our careers. For some, it was a matter of fate: being handed a project by a
professor. For others, it was the attraction of studying something so totally fascinating
that it was almost impossible not to study. I confess to being in the latter group—
drawn to the study of bacterial bioluminescence like an insect to a flame after hear-
ing a lecture presented by Professor J. W. Hastings at the University of Chicago in the
early 1960s. This led to a thesis project on the subject of bacterial bioluminescence,
and I have continued this work for more than 30 years!

During the ensuing years, I have used the bacterial bioluminescence system as a
teaching tool, using its beauty and simplicity to capture the interest and imagination
of many a student, and have often mused about the possibility of designing a whole
course in bacteriology (or some part of it) using a bioluminescent bacterium and bio-
luminescence as the major organism and system of study. However, as often happens,
due to the limitations of time and energy, such endeavors languish on the shelf as
“great ideas” but fail to mature into working systems.

It was thus with some excitement that I have observed Mike Winfrey, Marc Rott,
and Al Wortman design, implement, and now publish, in manual format, a series of
exercises in molecular biology using the bacterial luminescence (/ux) genes. Since the
original cloning of these genes in 1982 by Dan Cohn, and the resulting excitement of
seeing Escherichia coli glowing in the darkroom, it has seemed obvious that this
could and should be a powerful teaching tool. Yet until now there was no procedural
manual that allowed this to be done in the classroom format.

It has been my great pleasure to follow the development of this manual, to see
summer students struggle with and complete the experiments, and to watch it mature
into a usable manual for teaching at many levels. The feedback from students has
been uniformly positive—and the exercises are enjoyable and intellectually challeng-
ing. Winfrey, Rott, and Wortman have produced an excellent manual with a selection
of experiments that goes far beyond just molecular biology.

They step beyond molecular biology in experiments that examine the ecology
and distribution of the luminous bacteria using molecular probes. The ecology and
distribution of the luminous bacteria remains one of the unexplored horizons of
marine (and soil) microbiology, and when such discussions are added to the molecu-
lar biology of bioluminescence, the usefulness of these techniques and approaches for
studying organisms, populations, and ecology becomes apparent. I believe that this
manual has tremendous potential for educating, exciting, and challenging minds at all
levels—from beginning students to jaded veterans—and I am pleased to see its
publication.

Kenneth H. Nealson

Distinguished Professor of Biological Sciences
University of Wisconsin-Milwaukee

Center for Great Lakes Studies
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PREFACE

In slightly less than two decades, the biological sciences have been revolutionized by
new procedures used to manipulate and study genetic material. At the heart of this
“biological revolution” are procedures known as recombinant DNA techniques—
the ability to splice pieces of foreign DNA into a vector and transfer these recombi-
nant DNA molecules into a living organism. In the early 1980s, like many university
faculty, 1 realized that this revolution in how biological systems are studied also
required changes in how the biological sciences are taught. The applications of
recombinant DNA techniques were so widespread and were having such a universal
impact that it was important for young scientists to have training in the principles,
methods, and applications of these procedures. Although it was relatively easy to
incorporate this novel information into lectures, performing recombinant DNA tech-
niques in a teaching lab seemed almost overwhelming.
However, 1 had always been inspired by the Chinese proverb that states:

I hear and 1 forget,
I see and I remember,
I do and I understand

and felt that for students to truly comprehend the elegance and power of these tech-
niques, they should actually perform gene cloning experiments in a laboratory setting.
Thus, in the mid-1980s, I began developing a curriculum to bring the relatively new
procedures in recombinant DNA techniques into undergraduate teaching laboratories.
My first attempts in 1985 involved the use of homemade gel boxes put together with
scraps of plexiglass and nicrome wire, a single micropipet capable of measuring 2-10
ul (for a class of 20 students), and a handheld UV light.

During these early attempts at teaching recombinant DNA techniques, I was
intrigued by the possibility of having students clone a gene from an entire genome,
even though this seemed far beyond the scope of undergraduate teaching laborato-
ries. In 1988, while pondering how to develop teaching labs that would allow such a
cloning, I heard a talk by Ken Nealson on bacterial bioluminescence. I had been fasci-
nated with these organisms since graduate school, where I had isolated them from
fresh shrimp in a dark (and rather smelly) room. Ken described, amid beautiful slides
of bacteria producing a soothing blue luminescence, how they had cloned the genes.
The usually extremely time-consuming process of screening the thousands of clones
from a genomic library for the clone of interest was done in mere minutes in a dark
room! This launched the idea of developing a laboratory teaching curriculum centered
around the cloning of the bioluminescence genes.

In 1990, Al Wortman, a new molecular biologist at University of Wisconsin-
La Crosse, and I wrote an Undergraduate Faculty Enhancement Program grant through
the National Science Foundation to offer a two-week summer laboratory workshop in
molecular biology for college faculty. We were funded for three years, and these work-
shops, along with a new undergraduate course in microbial genetics, resulted in the
birth of this manual. We wanted to create a curriculum that not only allowed the
molecular biology research techniques to be done within the limitations of college
teaching laboratories, but also provided students with a sense of completing a major
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research project rather than just presenting a collection of seemingly unrelated tech-
niques.

In the first year of the NSF-funded workshop, we compiled an integrated series
of exercises involving the cloning, mapping, subcloning, and sequencing of the biolu-
minescence (lux) genes from the marine bacterium Vibrio fischeri. Following the first
year of the course, Al Wortman resigned and was replaced by Marc Rott. Marc had
extensive experience in bacterial molecular biology, assisted in part of the 1992 NSF
workshop, and was a co-instructor in the 1993 course. Marc and I received an addi-
tional two years of funding from NSF to offer an expanded two-and-a-half-week work-
shop for college faculty in the summers of 1994 and 1995. Through the NSF-
sponsored summer courses (attended by 100 college faculty) and our undergraduate
microbiology courses, the exercises were thoroughly and repeatedly tested. We also
extensively revised the manual each year based on the experiences and valuable com-
ments of college faculty and our students.

So, more than a decade after the inception of an idea, and after over seven years
of development, we are pleased to publish this manual—an integrated series of labo-
ratory exercises based on the cloning and analysis of genes encoding bacterial biolu-
minescence. In Unraveling DNA: Molecular Biology for the Laboratory, we guide
students and instructors alike through the tangled maze of modern protocols in mole-
cular biology and make them feasible in the time constraints of undergraduate labora-
tories. Although in many cases we have pushed the envelope in determining how
short one can make incubations, these exercises still yield excellent results in the
hands of students. We have not varied conceptually from how these fundamental pro-
cedures in molecular biology are done, and the protocols in this manual are suitable
for use in research labs as well.

At first glance, cloning a set of genes from an entire genome in an undergradu-
ate course seems overly ambitious. We received some criticism from reviewers in our
NSF proposals that it was not possible to clone a gene in a two-week course. What
they failed to realize was that we cloned the genes in the first week and spent the
second week analyzing the clones! Conducting a series of integrated exercises where
subsequent exercises depend on the successful completion of previous labs may also
seem problematic. Students, like all scientists, will make mistakes and not all will be
successful in completing each exercise. However, the techniques provided here have
been exhaustively tested by thousands of undergraduate students and more than a
hundred faculty, and have proven to work exceptionally well. In addition, we have
designed the exercises such that each group generates a large excess of the material
needed for subsequent labs. Thus, student groups that encounter problems in any
exercise will be able to borrow materials, DNA, or strains from other groups. This
approach allows everyone to complete the entire cloning project successfully.

Besides providing basic experience and understanding in the principles and prac-
tice of modern molecular techniques, it is also our intention to present this material
in a format that is exciting and fun for students. With this objective in mind, we have
based the entire series of exercises on one of the world’s most fascinating biological
systems: the biological production of light. We have found that this adds an additional
level of interest and biological relevance to the already intriguing study of molecular
biology.

One limitation of laboratory manuals in rapidly advancing areas such as molecu-
lar biology is that they often become out of date even before they are published. This




is particularly true with the use of computers in molecular biology. To circumvent
this, we have established a Molecular Biology Home Page on the World Wide Web:

http://www.uwlax.edu/MoBio

The computer analysis of DNA (Exercise 26) is linked to our home page to allow stu-
dents to use the most recent and relevant Internet sites to conduct the exercise. Our
home page also provides links to numerous other sites on the World Wide Web of rel-
evance to many of the exercises in the manual.

In addition to the 28 exercises in the manual, 19 appendices provide a wealth of
information on basic procedures, principles and precautions in molecular biology,
recipes for media and reagents, lists of suppliers of equipment and materials used in
the course, and current references. These provide a valuable resource for student and
instructor alike and are used in many of the exercises. An instructor’s manual is also
available with detailed instructions on how to prepare the materials for each exercise,
tips on interpreting results, troubleshooting potential errors, and answers to the ques-
tions following each exercise. Instructors are also referred to our home page for
updated preparation tips, suppliers, and so on.

Finally, it is easy to get lost in the details of molecular biology and forget the big
picture. Molecular biology is an elegant science in its own right, but today it is most
frequently used as a powerful set of tools to study a myriad of biological processes.
In this manual, we have attempted not to lose the connection with the organisms we
are examining and the environment from which they came. Thus, we hope you come
away from using this manual with not only an appreciation of the power of molecu-
lar biology but also an interest in a unique group of luminous bacteria and the often
bizarre deep-sea creatures that provide these organisms a home.

Mike Winfrey
(with Marc Rott and Al Wortman)
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INTRODUCTION TO BACTERIAL
BIOLUMINESCENCE

The biological production of light, or bioluminescence, has intrigued and fascinated
humans for thousands of years, and scientific studies on bioluminescence date back
more than 300 years (Meighen 1988). Numerous organisms have the ability to emit
biologically produced light, including fireflies, fish, clams, worms, algae, and bacteria
(Harvey 1952). Perhaps some of the most bizarre and fascinating of these are marine
fish and squid, which have a variety of unique light organs (Goode and Bean 1895,
McCosker 1977, Robison 1995, Ruby and McFall-Ngai 1992). However, most of the
luminescent marine animals do not produce bioluminescence themselves, but harbor
bioluminescent bacteria in specialized light organs. Due to their ease of study, exten-
sive research has been done on bioluminescent bacteria, which has allowed a detailed
understanding of the biochemistry and genetics of this process.

Most bioluminescent bacteria are marine in origin and include both free living
forms and species that form symbiotic relationships with fish or squid. The light
organs are often highly specialized and specifically adapted to harbor essentially pure
cultures of the luminescent bacteria (see Figure 1). Bioluminescence in fish is particu-
larly common in the deep sea, where up to 96% of all deep-sea fish are reported to
be bioluminescent (Harvey 1952). The exact role of bioluminescence is not clearly
known, although numerous advantages to the fish have been proposed, such as ward-
ing off predators, attracting prey, or communicating. In return for producing light for
the fish, the bacteria are provided with a protected environment and a rich supply of
nutrients. Recently, some understanding of the relationship between bioluminescent

stomach
intestine

Figure 1
A hypothetical fish illustrating the approximate location and size of light organs (indicated in

blue) of the various types of luminescent fishes (modified from Hastings and Nealson 1981,
with permission)
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marine species and their bacterial symbionts has evolved from the study of the squid
Euprymna scolopes (see front cover) and its symbiont Vibrio fischeri (Boettcher, et.
al 1996, McFall-Ngai and Ruby 1991, Ruby and McFall-Ngai 1992), and this system has
become an excellent model for studying animal-bacterial symbioses.

Besides the mutualistic relationships, bioluminescent bacteria are common in a
variety of other associations with marine animals. Many are saprophytic, found on liv-
ing or dead fish or shellfish. In fact, one of the easiest ways to isolate bioluminescent
bacteria is to allow bacterial growth on the surface of fresh fish and then to examine
the fish for bioluminescent patches in a dark room. Luminescent bacteria have also
been isolated from stored meat and even open human wounds (Hastings and Nealson
1981). Numerous species are parasites on marine crustaceans, such as sand fleas
(Harvey 1952), and other species are commensal in the intestinal tracts of marine ani-
mals (Hastings and Nealson 1981).

Bioluminescence is catalyzed by an enzyme known as luciferase (Meighen
1988). The bacterial enzyme is a heterodimer with a molecular weight of approxi-
mately 80,000 daltons and consists of an a and B subunit with molecular weights of
approximately 42,000 and 38,000 daltons, respectively. The active site is on the o sub-
unit, although the 3 subunit is required for activity. Luciferase is a mixed function oxi-
dase that produces a blue-green light via the simultaneous oxidation of reduced flavin
mononucleotide (FMNH,) and a long chain aldehyde (tetradecanal) by O,:

FMNH, + O, + R-CHO =———> FMN + R-COOH + H,O +

The energy for light production is supplied by the oxidation of the aldehyde and
FMNH,. The actual mechanism of light emission is not clearly understood but is
thought to result from the formation of a hydroperoxy flavin via the reaction of
FMNH, and O,. These molecules have been shown to emit light in the presence of
aldehydes (Meighen 1988).

Three additional enzymes are necessary to generate the aldehyde required in the
reaction. The fatty acids for this fatty acid reductase enzyme complex are removed
from the fatty acid biosynthesis pathway via the enzyme acyl-transferase. This
enzyme reacts with acyllACP (Acyl Carrier Protein) to release free fatty acids
(R-COOH). The fatty acids are then reduced to an aldehyde by a two-enzyme system
via the following reaction:

R-COOH + ATP + NADPH ——— R-CHO + AMP + PP + NADP*

One enzyme, acyl-protein synthetase, activates the fatty acid via the cleavage of
ATP to form R-CO-AMP. This serves as the substrate for the final enzyme, acyl-
reductase, that catalyzes the NADPH-dependent reduction of the activated fatty acid
to an aldehyde. The role of each enzyme involved in light production is summarized
in Figure 2.

Bacterial bioluminescence is observed only at very high cell densities because of
a unique type of regulation known as autoinduction (Nealson and Hastings 1979). The
bacteria produce a diffusible compound (an N-acyl homoserine lactone) known as an
autoinducer, which induces transcription of the genes encoding the enzymes required
for light production. However, light production occurs only when a threshold concen-
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Figure 2
Pathway of aldehyde formation and light production in the bacterial bioluminescence system
(modified from Meighen 1988, with permission).

tration of the autoinducer accumulates. Thus, bacteria at high cell density in the light
organ of a fish accumulate sufficient autoinducer to bioluminesce, while free living
bacteria do not. The requirement for an autoinducer represents a significant ecological
adaptation. Because light production requires a tremendous amount of energy and
cellular reducing power, free living bacteria in the ocean—which are nutrient limited—
will not waste this energy expenditure that probably offers them no benefit.

Interestingly, the autoinduction mechanism has recently been shown to be a gen-
eral mode of regulation in many gram-negative bacteria. There is considerable interest
in this process as a result of the discovery that some plant and animal pathogens, as
well as plant symbionts, also produce homoserine lactone autoinducers and have /uxI
and /uxR analogs to control host colonization. It appears that many bacterial behav-
iors involved in host colonization (such as bioluminescence) require a large popula-
tion, or “quorum,” of bacteria and use the /uxI and /uxR system of autoinduction.
This has resulted in use of the phrase “quorum sensing” (Fuqua, et al. 1994) to
describe cell activities that require a threshold cell density.

With the advent of recombinant DNA techniques, it has been possible to clone
and determine the genetic organization of the bacterial bioluminescence genes from
numerous species (see Meighen 1988, 1991, 1994 for examples). The a and B sub-
units of luciferase and the three enzymes required for aldehyde formation are encod-
ed in a single operon (the /ux operon) in all luminescent bacteria examined (see
Figure 3). The first two structural genes, /uxC and /uxD code for the acylreductase
and acyl-transferase, respectively. These are followed by /uxA and luxB, which code for
the o and B subunits of luciferase, and finally /uxE, which codes for the acyl-protein
synthetase. Two regulatory genes, /uxl and /uxR, have also been identified in Vibrio
fischeri (which has recently been reclassified as Photobacterium fischeri). The luxl
gene is on the same operon as the structural genes, whereas /uxR is transcribed in
the opposite direction. LuxR codes for a transcriptional activator that binds the
autoinducer synthesized by the /uxl gene product.
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Figure 3
The lux operon of Vibrio fischeri. luxC codes for the acylreductase; luxD codes for the acyl-
transferase; luxA and luxB code for the a and B subunits of luciferase, respectively; /uxE codes

for the acyl-protein synthetase; /uxR and /uxI code for regulatory proteins. Arrows under the
operon indicate the directions of transcription.

Detailed study of the molecular genetics of bacterial /ux operons has allowed
use of this genetic system in applied and basic research. The /ux system is now used
in toxicity testing (Schiewe, et al. 1985), as a reporter in gene fusions to indicate the
level of expression of various operons (Heitzer, et al. 1992, Nealson and Hastings
1991, Selifonova, et al. 1993), in promoter probe vectors (Sohaskey, et al. 1992), and as
a method of monitoring the fate of genetically engineered microorganisms in the
environment (Shaw, et al. 1992). The genes for bacterial bioluminescence have also
been engineered into bacteriophage to allow sensitive testing for bacterial pathogens
(Stewart, et al. 1996). Although bioluminescence will always hold its appeal and
excitement due to the soothing blue light produced, this unique biological process is

likely to find additional practical applications in molecular biology and biotechnology
in years to come.
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