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Preface F

This dictionary is intended to be a reference book that gives
reliable definitions or clear and precise explanations of mathematical
terms. The level is such that it will suit, among others, sixth-
form pupils, college students and first-year university students
who are taking mathematics as one of their courses. Such
students will be able to look up any term they may meet and be
led on to other entries by following up cross-references or by
browsing more generally.

The concepts and terminology of all those topics that feature in
pure and applied mathematics and statistics courses at this level
today are covered. There are also entries on mathematicians of
the past and important mathematics of more general interest.
Computing is not included. The reader’s attention is drawn to the
appendices which give useful tables for ready reference.

Some entries give a straight definition in an opening phrase.
Others give the definition in the form of a complete sentence,
sometimes following an explanation of the context. In this case,
the keyword appears again in bold type at the point where it is
defined. Other keywords in bold type may also appear if this is
the most appropriate context in which to define or explain them.
Italic is used to indicate words with their own entry, to which
cross-reference can be made if required.

This edition is more than half as large again as the first
edition. A significant change has been the inclusion of entries
covering applied mathematics and statistics. In these areas, I am
very much indebted to the contributors, whose names are given
on page v. I am most grateful to these colleagues for their
specialist advice and drafting work. They are not, however, to
be held responsible for the final form of the entries on their
subjects. There has also been a considerable increase in the
number of short biographies, so that all the major names are
included. Other additional entries have greatly increased the
comprehensiveness of the dictionary.

The text has benefited from the comments of colleagues who
have read different parts of it. Even though the names of all of
them will not be given, I should like to acknowledge here their
help and express my thanks.

Christopher Clapham
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Abel, Niels Henrik (1802 - 1829) F /R, /B/RHT - Z B
Norwegian mathematician who, at the age of 19, proved that
the general equation of degree greater than 4 cannot be solved
algebraically. In other words, there can be no formula for the
roots of such an equation similar to the familiar formula for a
quadratic equation. He was also responsible for fundamental
developments in the theory of algebraic functions. He died in
some poverty at the age of 26, just a few days before he would
have received a letter announcing his appointment to a
professorship in Berlin.

abelian group 32 #: ¥, B Il /R #  Suppose that G is a
group with the operation . Then G is abelian (FJAZ () if
the operation o is commutative; that is, if, for all elements a
and binG,aob = boa.

abscissa #% & 5 The x-coordinate in a Cartesian
coordinate system in the plane.

absolute error #: %232 See error.

absolute value #5 % For any real number a, the
absolute value (also called the modulus) of a, denoted by
lal,is a itself if a0, and —a if a<<0. Thus |a| is positive
except when a = 0. The following properties hold:

W labl=lallbl.

) la+bllal+lb].

Gii) la-bi=llal-|bll.

(iv) Fora >0, | x |[<aifandonlyif - e < x < a.

absorbing state A See random walk.




2 absorption laws

absorption laws IR f#  For all sets A and B (subsets of
some universal set)s AN(AUB) = AandAU (AN B =
A. These are the absorption laws.

abstract algebra #ili £ {3 The area of mathematics
concerned with algebraic structures, such as groups, rings and
fields, involving sets of elements with particular operations
satisfying certain axioms. The purpose is to derive, from the
set of axioms, general results that are then applicable to any
particular example of the algebraic structure in question. The
theory of certain algebraic structures is highly developed; in
particular, the theory of vector spaces is so extensive that its
study, known as linear algebra, would probably no longer be
classified as abstract algebra.

acceleration #E Suppose that a particle is moving in a
straight line, with a point O on the line taken as origin and
one direction taken as positive. Let x be the displacement of
the particle at time ¢. The acceleration of the particle is equal
to % or d2x/dt?, the rate of change of the velocity with
respect to ¢. If the velocity is positive (that is, if the particle
is moving in the positive direction), the acceleration is positive
when the particle is speeding up and negative when it is slowing
down. However, if the velocity is negative, a positive
acceleration means that the particle is slowing down and a
negative acceleration means that it is speeding up.

In the preceding paragraph, a common convention has been
followed, in which the unit vector i in the positive direction
along the line has been suppressed. Acceleration is in fact a
vector quantity, and in the one-dimensional case above it is
equal to ¥i.

When the motion is in two or three dimensions, vectors are
used explicitly. The acceleration a of a particle is a vector
equal to the rate of change of the velocity v with respect to ¢.
Thus a = dv/dt. If the particle has position vector r, then a=
d?r/dt? = ¥. When Cartesian coordinates are used, r= xi +
yi+ zk, and then ¥=Xi+ yj+zk.

Acceleration has the dimensions LT-2, and the Sl unit of
measurement is the metre per second per second, abbreviated
to ‘ms 2 7.

acceleration-time graph fii#-Ffa] & A graph that shows
acceleration plotted against time for a particle moving in a straight
line. Let v(t) and a(z) be the velocity and . acceleration,
respectively, of the particle at time ¢. The acceleration-time



addition 3

graph is the graph y = a (1), where the ¢-axis is horizontal and
the y-axis is vertical with the positive direction upwards. With
the convention that any area below the horizontal axis is
negative, the area under the graph between t = ¢y and t = 12
is equal to v(t3) — v(t1). (Here a common convention has
been followed, in which the unit vector i in the positive
direction along the line has been suppressed. The velocity and
acceleration of the particle are in fact vector quantities equal to
v(t)iand a(1)i, respectively.)

acceptance region #3%18 See hypothesis testing.

acute angle {f1 An angle that is less than a right angle.
An acute-angled triangle is one all of whose angles are acute.

addition (of complex numbers) I 74 (E ¥ #)  Let the
complex numbers z; and zz, wherezy = a+ biandzz = ¢ +
di, be represented by the points P; and P; in the complex
plane. Thenzy + zz = (a + ¢) + (b + d)i, and z1 + zz is
represented in the complex plane by the point Q such that
—_— —
% QP is a parallelogram; that is, such that 0Q = OP; +
OP;. Thus, if the cogqglex number z is associated with the
directed line-segment OP, where P represents z, then the
addition of complex numbers corresponds exactly to the
addition of the directed line-segments.

P,

P
o] x

addition (of directed line-segments) H¥E (4 28 B2 /9)
See addition (of vectors).

addition (of matrices) H¥: (4RI Let A and B be m X
n matrices, with A=[a;] and B=[b;]. The operation of
addition is defined by taking the sum (1) A+ B to be the m X
n matrix C, where C = [¢c; ] and ¢;j = a;j + by . The sum A+B
is not defined if A and B are not of the same order. This
operation + of addition on the set of all m X n matrices is
associative and commutative.

addition (of vectors) filB: (& #) Given vectors a and b,




4  addition modulo n

let OA and OB be directed line-segments that rg{esent a and
—>
b, with the same initial point O. The sum of OA and OB is
—>

the directed line-segment OC, where OACB is a
parallelogram, E_n*d the sum a+ b is defined to be the vector ¢
represented by OC. This is called the parallelogram law (¢
TR . Alternatively, the sum of vectors a ang_g can
be defglbed by representing a by a directed line-segment OP and
b by PQ, where the final point of the first directed line-
segment is the initial E_gint of the second. Then a+b is the
vector represented by OQ. This is called the triangle law (=
M) . Addition of vectors has the following properties,
which hold for all a, b and ¢:

(i) a+b= Db+ a, the commutative law.

(i a+ (b+¢) = (a+ b) + ¢, the associative law.

(iii) a+ 0 = 0 + a = a, where 0 is the zero vector.

(iv) a+(—a = (-a) +a = 0, where —a is the negative of a.

Cc Q

P
a

(0]
The parallelogram law The triangle law

addition modulo n i n T/}t See modulo n, addition

and multiplication .

additive group fniZ# A group with the operation +,
called addition, may be called an additive group. The
operation in a group is normally denoted by addition only if it
is commutative, so an additive group is usually abelian .

additive inverse fit4JCE See inverse element.

adjacency matrix 045/  For a simple graph G, with n
vertices vi, vz, ..., vn, the adjacency matrix A is the n X
n matrix [a;; ] with @ =1, if v; is joined to vj, and a; =0,
otherwise. The matrix A is symmetric and the diagonal entries
are zero. The number of ones in any row (or column) is equal
to the degree of the corresponding vertex. An example of a
graph and its adjacency matrix A is shown below.
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adjoint 8K The adjoint of a square matrix A, denoted
by adj A, is the transpose of the matrix of cofactors of A. For
A=[a;], let Aj denote the cofactor of the entry a;. Then
the matrix of cofactors is the matrix [ A; ] and adj A=[ 4; 7.
For example, a 3 X3 matrix A and its adjoint can be written

ail a1z as An Az Az
A= {021 az azz} yadj A = Blz Az Asz}
a3 as as 13 Az As
In the 2X 2 case, a matrix A and its adjoint have the form

_[a b . d -b
A_[C d]ad]A*[_c a].
The adjoint is important because it can be used to find the
inverse of a matrix. From the properties of cofactors, it can
be shown that A adj A= (det A) |. It follows that, when det
A £ 0, the inverse of A is (1/det A) adj A.

adjugate ¥ BIEBER = adjoint.

aerodynamic drag <3l }; A body moving through the
air, such as an aeroplane flying in the Earth’s atmosphere,
experiences a force due to the flow of air over the surface of
the body. The force is the sum of the aerodynamic drag,
which is tangential to the flight path, and the lift (3&F %),
which is normal to the flight path.

air resistance %5 “{ [l /7 The resistance to motion
experienced by an object moving through the air caused by the
flow of air over the surface of the object. It is a force that
affects, for example, the speed of a drop of rain or of a
parachutist falling towards the Earth’s surface. As well as
depending on the nature of the object, air resistance depends
on the speed of the object. Possible mathematical models are
to assume that the magnitude of the air resistance is
proportional to the speed or to the square of the speed.

Algebra, Fundamental Theorem of U ¥ & 4 ¢ 8




6 algebra of sets

See Fundamental Theorem of Algebra .

algebra of sets £10%( The set of all subsets of a universal
set E is closed under the binary operations | (union) and N
(intersection) and the unary operation ' (complementation).
The following are some of the properties, or laws, that hold
for subsets A, B and C of E:

DO AUBUO=AUBDUCandANBNOC =
(A N B) 1 C, the associative properties.

(i) AUB=BlJAand AN B = B[} A, the commutative
properties.

(i) AUZ =Aand A N = I, where Jis the empry
set .

(v v AUE=Eand AN E = A.

(v AUA=AandA N A= A.

) ANBUO=ANBUANC)and AU (BN
C) = (AU B N (A U O, the distributive
properties.

widDAUA'=EandANA =

(i) E' = & and &' = E.

(ix) (AD' = A.

X (AUB)'=A'NB and(ANB'=A"UB,De
Morgan’s laws.

The application of these laws to subsets of E is known as the
algebra of sets. Despite some similarities with the algebra of
numbers, there are important and striking differences.

algebraic number %% A real number that is the root
of a polynomial equation with integer coefficients. All
rational numbers are algebraic, since a/b is the root of the
equation bx ~ a = 0. Some irrational numbers are algebraic;

for example, 2 is the root of the equation x2 — 2 = 0. An
irrational number that is not algebraic (such as =) is called a
transcendental number .

algebraic structure U345 The term used to describe
an abstract concept defined as consisting of certain elements
with operations satisfying given axioms. Thus, a group or a
ring or a field is an algebraic structure. The purpose of the
definition is to recognize similarities that appear in different
contexts within mathematics and to encapsulate these by means
of a set of axioms.

algorithm B 5, LW R4 A precisely described routine
procedure that can be applied and systematically followed
through to a conclusion.



analysis 7

al-Khwarizmi 765 7%  See under K.
alternate angles 345 ffi  See transversal.
alternative hypothesis #—{B i See hypothesis testing.

altitude H 48, THIELR A line through one vertex of a triangle
and perpendicular to the opposite side. The three altitudes of a
triangle are concurrent at the orthocentre.

amicable numbers 3 I ¥ A pair of numbers with the
property that each is equal to the sum of the positive divisors of
the other. (For the purposes of this definition, a number is not
included as one of its own divisors. ) For example, 220 and 284
are amicable numbers because the positive divisors of 220 are
1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110, whose sum is
284, and the positive divisors of 284 are 1, 2, 4, 71 and 142,
whose sum is 220.

These numbers, known to the Pythagoreans, were used as
symbols of friendship. The amicable numbers 17296 and
18 416 were found by Fermat, and a list of 64 pairs was
produced by Euler. In 1867, a sixteen-year-old Italian boy
found the second smallest pair, 1184 and 1210, overlooked by
Euler. More than 600 pairs are now known. It has not been
shown whether or not there are infinitely many pairs of
amicable numbers.

amplitude #Ri& Suppose that x = Asin(wt + a), where A
(>0), w and a are constants. This may, for cxamplc, give
the displacement x of a particle, moving in a straight line, at
time ¢. The particle is thus oscillating about the origin O. The
constant A is the amplitude, and gives the maximum distance
in each direction from O that the particle attains.

The term may also be used in the case of damped oscillations
to mean the corresponding coefficient, even though it is not
constant. For example, if x = 5e~2! sin 3¢, the oscillations are
said to have amplitude 5e ~2¢, which tends to zero as ¢ tends to
infinity.
analysis 947, 0 #7% The area of mathematics generally
taken to include those topics that involve the use of limiting
processes. Thus differential calculus and integral calculus
certainly come under this heading. Besides these, there are
other topics, such as the summation of infinite series, which
involve ‘infinite’ processes of this sort. The Binomial Theorem, a
theorem of algebra, leads on into analysis when the index is no
longer a positive integer, and the study of sine and cosine,




8 analysis of variance

which begins as trigonometry, becomes analysis when the
power series for the functions are derived. The term ‘analysis’
has also come to be used to indicate a rather more rigorous
approach to the topics of calculus, and to the foundations of
the real number system.

analysis of variance J7#4r#7 A general procedure for
partitioning the overall variability in a set of data into
components due to specified causes and random variation. It
involves calculating such quantities as the ‘between-groups sum
of squares’ and the ‘residual sum of squares’, and dividing by
the degrees of freedom to give so-called ‘mean squares’. The
results are usually presented in an ANOVA (J5 24} 7) table,
the name being derived from the opening letters of the words
‘ analysis of variance’. Such a table provides a concise
summary from which the influence of the explanatory variables
can be estimated and hypotheses can be tested, usually by
means of F-tests.

anchor ring 3, B3 = torus.
and 530 See conjunction.
angle (between lines in space) £ (AP FLLR) Given

two lines in space, let u; and Uz be vectors with directions
along the lines. Then the angle between the lines, even if they
do not meet, is equal to the angle between the vectors u; and
uz (see angle (between vectors)), with the directions of u; and
w2 chosen so that the angle 0 satisfies 0 <C 6 <C n/2 (0 in
radians) , or 0<{0<90 (8 in degrees). If I, m1, n; and Iz,
mg, ng are direction ratios for directions along the lines, the
angle 4 between the lines is given by

[ lils + mymz + nyng |
VI +m}+ni/15+ m§ + n}
angle (between lines in the plane) 343 CEFE LHLH) In

coordinate geometry of the plane, the angle « between two
lines with gradients m; and m; is given by

cosd =

my —m
t = =%
ana 1+ mimy
This is obtained from the formula for tan ( A — B). In the
special cases when m1mz = — 1 or when m; or my is infinite,

it has to be interpreted appropriately.
angle (between planes) I/ (FE ) Given two planes,



angular acceleration 9

let m and ng be vectors normal to the two planes. Then a
method of obtaining the angle between the planes is to take
the angle between n; and mg (see angle (between vectors)),
with the directions of m and e chosen so that the angle ¢
satisfies 0<C 0<C x/2 (0 in radians), or 0 <C 0 <C 90 (@ in
degrees) .

angle (between vectors) Je 5 (B BIAY)  Given vectors
aand b, let OA and OB be directed line-segments representing
a and b. Then the angle @ between the vectors a and b is the
angle /AOB, where 8 is taken to satisfy 0<CO< 7 (@ in
radians) , or 0<C8<C180(0 in degrees). It is given by
a-b
cosf = fallbl’

angle of friction BE# £ The angle A such that tan A =y,
where g is the coefficient of static friction. Consider a block
resting on a horizontal plane, as shown in the figure. In the
limiting case when the block is about to move to the right on
account of an applied force of magnitude P, N = mg, P = F
and F = s N. Then the contact force, whose components are
N and F, makes an angle A with the vertical.

N

e Tt

mg

angle of inclination {ii&lfi See inclined plane.

angle of projection # §1 ffi, X 41 The angle that the
direction in which a particle is projected makes with the
horizontal. Thus it is the angle that the initial velocity makes
with the horizontal.

angular acceleration f il E Suppose that the particle
P is moving in the plane, in a circle with centre at the origin
O and radius ro. Let (ro, 8) be the polar coordinates of P.
At an elementary level, the angular acceleration may be
defined to be 4.

At a more advanced level, the angular acceleration a of
the particle P is the vector defined by @ = @, where ® is the
angular velocity (f§38 ) . Let i and j be unit vectors in the




10 angular frequency

directions of the positive x-and y-axes and let k=iXj. Then,
in the case above of a particle moving along a circular path,
®=0kand @ = 8k. If r, v and a are the position vector,
velocity and acceleration of P, then

r=roe,, v=r=rofe,, a=i= — rf2e, + rofes,
where e, = icosf + jsinf and ey = —isinf + jcost (see

circular motion). Using the fact that v=wXr, it follows that
the acceleration a is given by a=aXr+eX(@Xr).

angular frequency f35i% The constant w in the equation
X = —w? x for simple harmonic motion . In certain respects «t,
where ¢ is the time, acts like an angle. The angular frequency
w is usually measured in radians per second. The frequency of
the oscillations is equal to /2.

angular measure fifilf There are two principal ways of
measuring angles: by using degrees,in more elementary work,
and by using radians, essential in more advanced work.

angular momentum fizh & Suppose that the particle P of
mass m has position vector r and is moving with velocity v

Then the angular momentum L of P about the point A with
position vector T4 is the vector defined by L=(r—ra) X mv.
It is the moment of the linear momentum about the point A.
See also conservation of angular momentum.

Consider a rigid body rotating with angular velocity @ about
a fixed axis, and let L be the angular momentum of the rigid
body about a point on the fixed axis. Then L= I®, where I is
the moment of inertia of the rigid body about the fixed axis.

To consider the general case, let ® and L now be column
vectors representing the angular velocity of a rigid body and
the angular momentum of the rigid body about a fixed point
(or the centre of mass). Then L = l®, where | is a 3 X 3
matrix, called the inertia matrix ({i{ #: %), whose elements
involve the moments of inertia and the products of inertia of
the rigid body relative to axes through the fixed point (or
centre of mass).

The rotational motion of a rigid body depends on the angular
momentum of the rigid body. In particular, the rate of change
of the angular momentum about a fixed point (or centre of
mass) equals the sum of the moments of the forces acting on
the rigid body about the fixed point (or centre of mass).

angular speed 1 3 ¥ The magnitude of the angular
velocity.



