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Preface to the Second English Edition

The theory of finite elements and their applications is so vivid that the second
printing gave rise to some additions. We have not only eliminated some misprints,
but we have also added some new material that although being basic has turned
out to be of interest in actual research or actual applications of finite elements
during the last years. We will emphasize some of these extensions.

The introduction of finite element spaces in Chapter II, §5 is now focused
such that all the ingredients of the formal definition at the end of that § are well
motivated.

The general considerations of saddie point problems in Chapter III are aug-
mented. The direct and converse theorems that are related to Fortin interpolation
are presented now under a common aspect. Mixed methods are often connected
with a softening of the energy functional that is wanted in some applications for
good reasons. It is described in order to understand a different but equivalent
variational formulation that has become popular in solid mechanics.

In Chapter IV only the standard proof of the Kantorowitch inequality has
been replaced by a shorter one.

The maltigrid theory requires less regularity assumptions if convergence with
respect to the energy norm is considered. A quick introduction into that theory is
now included, and multigrid algorithms are also considered in the framework of
space decompositions.

Finite element computations in solid mechanics require often appropriate
elements in order to avoid an effect called "locking" by engineers. From the math-
ematical point of view we have problems with a small parameter. Methods for
treating nearly incompressible material serve as a model for positive results while
negative results are easily described for a more general framework.

The author wants to thank numerous friends who have given valuable hints
for improvements of the text. Finally thanks are going to Cambridge University
Press for the continuation of the good cooperation.

Autumn, 2000 Dietrich Braess
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Preface to the First English Edition

This book is based on lectures regularly presented to students in the third
and fourth year at the Ruhr-University, Bochum. It was also used by the translater,
Larry Schumaker, in a graduate course at Vanderbilt University in Nashville. I
would like to thank him for agreeing to undertake the translation, and for the close
cooperation in carrying it out. My thanks are also due to Larry and his students
for raising a number of questions which led to improvements in the material itself.

Chapters I and II and selected sections of Chapters III and V provide material
for a typical course. I have especially emphasized the differences with the numer-
ical treatment of ordinary differential equations (for more details, see the preface
to the German edition).

One may ask why I was not content with presenting only simple finite ele-
ments based on complete polynomials. My motivation for doing more was provided
by problems in fluid mechanics and solid mechanics, which are treated to some
extent in Chapter III and V1. I am not aware of other textbooks for mathematicians
which give a mathematical treatment of finite elements in solid mechanics in this
generality.

The English translation contains some additions as compared to the German
edition from 1992. For example, I have added the theory for basic a posteriori
error estimates since a posteriori estimates are often used in connection with local
mesh refinements. This required a more general interpolation process which also
applies to non-uniform grids. In addition, I have also included an analysis of
locking phenomena in solid mechanics.

Finally, I would like to thank Cambridge University Press for their friendly
cooperation, and also Springer-Verlag for agreeing to the publication of this En-
glish version.

Autumn, 1996 Dietrich Braess
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Preface to the German Edition

The method of finite elements is one of the main tools for the numerical treatment
of elliptic and parabolic partial differential equations. Because it is based on the
variational formulation of the differential equation, it is much more flexible than
finite difference methods and finite volume methods, and can thus be applied to
more complicated problems. For a long time, the development of finite elements
was carried out in parallel by both mathematicians and engineers, without either
group acknowledging the other. By the end of the 60’s and the beginning of the
70’s, the material became sufficiently standardized to allow its presentation to
students. This book is the result of a series of such lectures.

In contrast to the situation for ordinary differential equations, for elliptic
partial differential equations, frequently no classical solution exists, and we often
have to work with a so-called weak solution. This has consequences for both
the theory and the numerical treatment. While it is true that classical solutions do
exist under approriate regularity hypotheses, for numerical calculations we usually
cannot set up our analisis in a framework in which the existence of classical
solutions is guaranteed.

One way to get a suitable framework for solving elliptic boundary-value
problems using finite elements is to pose them as variational problems. It is our
goal in Chapter II to present the simplest possible introduction to this approach.
In Sections 1 — 3 we discuss the existence of weak solutions in Sobolev spaces,
and explain how the boundary conditions are incorporated into the variational
calculation. To give the reader a feeling for the theory, we derive a number of
properties of Sobolev spaces, or at least illustrate them. Sections 4 — § are devoted
to the foundations of finite elements. The most difficult part of this chapter is §6
where approximation theorems are presented. To simplify matters, we first treat
the special case of regular grids, which the reader may want to focus on in a first
reading.

In Chapter IIl we come to the part of the theory of finite elements which
requires deeper results from functional analysis. These are presented in §3. Among
other things, the reader will learn about the famous Ladyshenskaja~Babugka—
Brezzi condition, which is of great importance for the proper treatment of problems
in fluid mechanics and for mixed methods in structural mechanics. In fact, without
this knowledge and relying only on common sense, we would very likely find
ourselves trying to solve problems in fluid mechanics using elements with an
unstable behavior.

It was my aim to present this material with as little reliance on results from
real analysis and functional analysis as possible. On the other hand, a certain basic
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knowledge is extremely useful. In Chapter I we briefly discuss the difference
between the different types of partial differential equations. Students confronting
the numerical solution of elliptic differential equations for the first time often find
the finite difference method more accessible. However, the limits of the method
usually become apparent only later. For completeness we present an elementary
introduction to finite difference methods in Chapter 1.

For fine discretizations, the finite element method leads to very large systems
of equations. The operation count for solving them by direct methods grows like
n2. In the last two decades, very efficient solvers have been developed based
on multigrid methods and on the method of conjugate gradients. We treat these
subjects in detail in Chapters IV and V.

Structural mechanics provides a very important application area for finite ele-
ments. Since these kinds of problems usually involve systems of partial differential
equations, often the elementary methods of Ch. II do not suffice, and we have to
use the extra flexibility which the deeper results of Ch. III allow. I found it nec-
essary to assemble a surprisingly wide set of building blocks in order to present a
mathematically rigorous theory for the numerical treatment by finite elements of
problems in linear elasticity theory.

Almost every section of the book includes a set of Problems, which are not
only excercises in the strict sense, but also serve to further develop various formu-
lae or resulits from a different viewpoint, or to follow a topic which would have
disturbed the flow had it been included in the text itself. It is well-known that in the
numerical treatment of partial differential equations, there are many opportunities
to go down a false path, even if unintended, particularly if one is thinking in terms
of classical solutions. Learning to avoid such pitfalls is one of the goals of this
book.

This book is based on lectures regularly presented to students in the fifth
through eighth semester at the Ruhr University, Bochum. Chapters I and II and
parts of Chapters III and V were presented in one semester, while the method
of conjugate gradients was left to another course. Chapter VI is the result of my
collaboration with both mathematicians and engineers at the Ruhr University.

A text like this can only be written with the help of many others. I would
like to thank F.-J. Barthold, C. Blémer, H. Blum, H. Cramer, W. Hackbusch, A.
Kirmse, U. Langer, P. Peisker, E. Stein, R. Verfiirth, G. Wittum and B. Worat for
their corrections and suggestions for improvements. My thanks are also due to
Frau L. Mischke, who typeset the text using TgX, and to Herr Schwarz for his
help with technical problems relating to TgX. Finally, I would like to express my
appreciation to Springer-Verlag for the publication of the German edition of this
book, and for the always pleasant collaboration on its production.

Bochum, Autumn, 1991 Dietrich Braess



Notation

Notation for Differential Equations and Finite Elements

Q
r

div f

17
T

open set in R”
=982
part of the boundary on which Dirichlet conditions are prescribed
part of the boundary on which Neumann conditions are prescribed
Laplace operator
differential operator
coefficient functions of the differential equation
difference star, stencil
space of square-integrable functions over £2
Sobolev space of L, functions with square-integrable
derivatives up to order m
subspace of H™(2) of functions with generalized
zero bounary conditions
set of functions with continuous derivatives up to order k
subspace of C*(£2) of functions with compact support
trace operator
Sobolev norm of order m
Sobolev semi-norm of order m
supremum norm
mesh-dependent norm
space of square-summable sequences
dual space of H
dual pairing
=) a;, order of multiindex o
partial derivative ;2
partial derivative of order o
(Fréchet) derivative
ellipticity constant
exterior normal
d/0v, derivative in the direction of the exterior normal
(0f/0xy, 8f/0xz, ..., 8f/0x,)
"1 (0f:/3x1)
finite element space
basis function in Sy
partition of
(triangular or quadrilateral) element in 7,



H(div, Q)
L;0(82)
Bs

n.

Notation Xv

reference element

radii of circumscribed circle and incircle of T, respectively
shape parameter of a partition

area (volume) of T

set of polynomials of degree < ¢

polynomial set (I1.5.4) w.r.t. quadrilateral elements

cubic polynomial without bubble function term

set of polynomials which are formed by the restriction

of S, to a (reference) element

= dim s

set of linear functionals in the definition of affine families
polynomial finite element spaces in Ly, H**' and Hy*'
set of functions in M! which are continuous at the midpoints of the
sides and which satisfy zero boundary conditions in the same sense
Raviart-Thomas element of degree k

interpolation operators on Ig¢ and on Sy, respectively
stiffness or system matrix

Kronecker symbol

edge of an element

kernel of the linear mapping L

orthogonal complement of V

polar of V

Lagrange function

space of restrictions (for saddle point problems)

constant in the Brezzi condition

= {v € Ly()%; dive € Ly(Q)}, Q € R¢

set of functions in L,(<2) with integral mean 0

cubic bubble functions

error estimator

Notation for the Method of Conjugate Gradients

Vf
k(A)
o(A)
p(A)

Amin(A)
Amax(4)
Al

1

C

8k

gradient of f (column vector)

spectral condition number of the matrix A
spectrum of the matrix A

spectral radius of the matrix A

smallest eigenvalue of the matrix A
largest eigenvalue of the matrix A
transpose of the matrix A

unit matrix

preconditioning matrix

gradient at the actual approximation x;
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dr
Vi
x'y
lx )l

1%l oo
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Notation

direction of the correction in step &

= Span[go’ RN gk—l]

Euclidean scalar product of the vectors x and y
= +/x’Ax (energy norm)

= max; |x;| (maximum norm)

k-th Chebyshev polynomial

relaxation parameter

Notation for the Multigrid Method

triangulation on the level £

finite element space on the level £
system matrix on the level ¢

= dim Sg

smoothing operator

restrictions

prolongation

variable on the level £ in the k-th iteration step and in the m-th substep
number of presmoothings or postsmoothings, respectively

=Vvi+ W

= 1 for V-cycle, = 2 for W-cycle

= €max

J-th basis function on the level £
convergence rate of MGM;

= Supy p¢

discrete norm of order s

measure of the smoothness of a function in S,
nonlinear operator

nonlinear mapping on the level £

derivative of £

homotopy parameter for incremental methods

Notation for Solid Mechanics

displacement

deformation

identity mapping

= V¢T V¢ Cauchy-Green strain tensor
strain

strain in a linear approximation
Cauchy stress vector

Cauchy stress tensor

first Piola~Kirchhoff stress tensor
second Piola—Kirchhoff stress tensor
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T =7 response function for the Cauchy stress tensor
T = fJ(F ) response function for the Piola—Kirchhoff stress tensor
£ E(FTF)=5(F)
T T(FFT)=T(F)
o stress in linear approximation
$?  unit sphere in R3
M3  set of 3 x 3 matrices
Mi’,_ set of matrices in M with positive determinants
Q®  set of orthogonal 3 x 3 matrices
0l =0'nM
S set of symmetric 3 x 3 matrices
S3  set of positive definite matrices in S*
14 = (11(A), 12(A4), 13(A)), invariants of A
A vector product in R>

diag(d,,...,d,) diagonal matrix with elements dy, ..., d,
A, u  Lamé constants
E modulus of elasticity
v Poisson ratio
n  normal vector (different from Chs. II and IIT)
C o=Ce
W energy functional of hyperelastic materiais
W W(FETF)=W(F)
g0 =Eij £;j0;;
To, T’y parts of the boundary on which « ando - n are prescribed, respectively
IT  energy functional in the linear theory
V®  symmetric gradient
as(t) skew-symmetric part of t
HY(Q)?! =[H' @)
HAQ) :={ve H(Q)R; v(x) =0 forx € Iy}
H(div, Q) :={r € Ly(R); divt € L,(R)}, T is a vector or a tensor
H(rot, Q) :={ne Ly(R)? rotn € Ly(Q)}, & c R?
H'Wiv,Q) :={te H'(Q) divt e H-'(Q)}, Q C R¢

6,y,w rotation, shear term, and transversal displacement
of beams and plates
t  thickness of a beam, membrane, or plate
£ length of a beam
Wi, ®p, Ty, Qp  finite element spaces in plate theory

my,  La-projector onto Ty,
R restriction to Iy,

Py Lj-projector onto Oy
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Chapter I

Introduction

In dealing with partial differential equations, it is useful to differentiate between
several types. In particular, we classify partial differential equations of second
order as elliptic, hyperbolic, and parabolic. Both the theoretical and numerical
treatment differ considerably for the three types. For example, in contrast with the
case of ordinary differential equations where either initial or boundary conditions
can be specified, here the type of equation determines whether initial, boundary,
or initial-boundary conditions should be imposed.

The most important application of the finite element method is to the numer-
ical solution of elliptic partial differential equations. Nevertheless, it is important
to understand the differences between the three types of equations. In addition, we
present some elementary properties of the various types of equations. Our discus-
sion will show that for differential equations of elliptic type, we need to specify
boundary conditions and not initial conditions.

There are two main approaches to the numerical solution of elliptic problems:
finite difference methods and variational methods. The finite element method be-
longs to the second category. Although finite element methods are particularly
effective for problems with complicated geometry, finite difference methods are
often employed for simple problems, primarily because they are simpler to use.
We include a short and elementary discussion of them in this chapter.



