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PREFACE TO THE SECOND EDITION

THE first edition of this volume of the Course of Theoretical Physics was published
in two parts (1971 and 1974) under the title “Relativistic Quantum Theory". It
contained not only the basic material on quantum electrodynamics but also chap-
ters on weak interactions and certain topics in the theory of strong interactions.
The inclusion of those chapters now seems to us inopportune. The theory of strong
and weak interactions is undergoing a vigorous development founded on new
physical ideas, and the situation in this field is changing very rapidly, so that the
time for a consistent exposition of the theory has not yet arrived. In the present
edition, therefore, we have retained only quantum electrodynamics, and accord-
ingly changed the title of the volume.

As well as a considerable number of corrections and minor changes, we have
made in this edition several more significant additions, including the operator
method of calculating the bremsstrahlung cross-section, the calculation of the
probabilities of photon-induced pair production and photon decay in a magnetic
field, the asymptotic form of the scattering amplitudes at high energies, inelastic
scattering of electrons by hadrons, and the transformation of electron-positron
pairs into hadrons.

A word regarding notation. We have reverted to the use of circumflexed letters
for operators, in line with the other volumes in the Course. No special notation is
used for the product of a 4-vector and a matrix vector y*, previously denoted by a
circumflexed letter; such products are now shown explicitly.

We have, alas, had to prepare this edition without the aid of Viadimir Berestets-
kii, who died in 1977; but some of the added material mentioned above had been
put together previously, by the three authors jointly.

Our sincere thanks are offered to all readers who have given us their comments
on the first edition of the book, and in particular to J. S. Bell, V: P. Krainov, L. B.
Okun’, V. 1. Ritus, M. 1. Ryazanov and 1. S. Shapiro.

July 1979 E. M. LiFsHiTZ
L. P. PitAEvski



FROM THE PREFACE TO
THE FIRST EDITION

IN AccOrRDANCE with the general plan of this Course of Theoretical Physics, the
present volume deals with relativistic quantum theory in the broad sense: the
theory of all phenomena which depend upon the finite velocity of light, including
the whole of the theory of radiation.

This branch of theoretical physics is still far from completion, even as regards
its basic physical principles, and this is particularly true of the theory of strong and
weak interactions. But even quantum electrodynamics, despite the remarkable
achievements of the last twenty years, still lacks a satisfactory logical structure.

In the choice of material for this book we have considered only results which
appear to be reasonably firmly established. In consequence, of course, the greater
part of the book is devoted to quantum electrodynamics. We have tried to give a
realistic exposition, with emphasis on the physical hypotheses used in the theory,
but without going into details of justifications, which in the present state of the
theory are in any case purely formal.

In the discussion of specific applications of the theory, our aim has been not to
include the whole vast range of effects but to select only the most fundamental of
them, adding some references to original papers which contain more detailed
studies. We have often omitted some of the intermediate steps in the calculations,
which in this subject are usually very lengthy, but we have always sought to
indicate any non-trivial point of technique.

The discussion in this book demands a higher degree of previous knowledge on
the part of the reader than do the other volumes in the Course. Our assumption has
been that a reader whose study of theoretical physics has extended as far as the
quantum theory of fields has no further need of predigested material.

This book has been written without the direct assistance of our teacher, L. D.
Landau. Yet we have striven to be guided by the spirit and the approach to
theoretical physics which characterized his teaching of us and which he embodied
in the other volumes. We have often asked ourselves what would be the attitude of
Dau to this or that topic, and sought the answer prompted by our many years’
association with him.

Our thanks are due to V. N. Baier, who gave great help in compiling §§90 and
97, and to V. I. Ritus for great help in writing §101. We are grateful to B. E.
Meierovich for assistance with calculations, and also to A. S. Kompaneets, who
made available his notes of L. D. Landau’s lectures on quantum electrodynamics,
given at Moscow State University in the academic year 1959-60.

June 1967 V. B. BERESTETsKIi, E. M. LiFsHITZ, L. P. PiTAEVSKII
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NOTATION

Four-dimensional

Four-dimensional tensor indices are denoted by Greek letters A, u, v,. . ., taking

the values 0, 1, 2, 3.
A 4-metric with signature (+ — — —) is used. The metric tensor is

8u.(8u=1gn=gn=gn=-1).

Components of a 4-vector are stated in the form a* = (a° a).

To simplify the formulae, the index is often omitted in writing the components
of a 4-vector.t The scalar products of 4-vectors are written simply as (ab) or ab;
ab =a,b* = asby—a - b.

The 4-position-vector is x*=(t, r). The 4-volume element is d*x.

The operator of differentiation with respect to the 4-coordinates is 9, = 3/ax*.

The antisymmetric unit 4-tensor is e***?, with e®'? = —¢g,33 = +1.

The four-dimensional delta function 8“'(a)=8(ag)5(a).

Three-dimensional

Three-dimensional tensor indices are denoted by Latin letters i, k, I, ..., taking
the values x, y, z.

Three-dimensional vectors are denoted by letters in bold type.

The three-dimensional volume element is d’x.

Operators

Operators are denoted by italic letters with circumflex.$

Commutators or anticommutators of two operators are written {f.8)-=fe = ¢f
The transposed operator is f.

The Hermitian conjugate operator is f*.

Matrix elements

The matrix element of the operator F for a transition from initial state i to final
state f is Fj; or (f|F|i).

t This way of writing the components is often used in recent literature. It is a compromise between
the limited resources of the alphabet and the demands of physics, and means, of course, that the reader
must be particularly attentive.

t However, to simplify the formulae, the circumflex is not written over spin matrices, and it is also
omitted when operators are shown in matrix elements.

xiii



xiv Notation

The notation |i) is used as an abstract symbol for a state independently of any
specific representation in which its wave function may be expressed. The notation
(f| denotes a final (“‘complex conjugate’) state.t

Correspondingly, (s|r) denotes the coefficients in the expression of a set of
states with quantum numbers r as superpositions of states with quantum numbers

sl = 2 [sXs|r).

The reduced matrix elements of spherical tensors are (f||F||i).

Dirac’s equation

The Dirac matrices are y*, with (y°)* =1, (')’ =(y)*=(¥%)? = - 1. The matrix
a =y%, B =1v°. The expressions in the spinor and standard representations are
(21.3), (21.16) and (21.20).

¥ = —iy’y'y?y3, (¥%) = 1; see (22.18).

o =1(y*y" ~ y"y*); see (28.2).

Dirac conjugation is expressed by ¢ = §*y°.

The Pauli matrices are o = (g,, 0,, 0.), defined in §20.

The 4-spinor indices are «, B,... and &, B, . . ., taking the values 1, 2 and i, 2.

The bispinor indices are i, k, l, ..., taking the values 1,2,3,4.

Fourier expansion

Three-dimensional:

f(r)= ff(k)e"‘ '(g k) f(k)=ff(r)e‘“‘"d’x.

and similarly for the four-dimensional expansion.

Units

Except where otherwise specified, relativistic units are used, with hi=1, ¢ = 1.
In these units, the square of the unit charge is ¢ = 1/137.

Atomic units have e =1, h = 1, m = 1. In these units, ¢ = 137. The atomic units
of length, time and energy are #°/me’, h’/me* and me‘/h*; the quantity Ry =
me*2h* is called a rydberg.

Ordinary units are given in the absolute (Gaussian) system.

Constants

Velocity of light ¢ =2.998 X 10" cm/sec.
Unit charget [e|=4.803x 107" CGS electrostatic units.

t This notation is due to Dirac.
¥ Throughout the book (except in Chapter XIV), e denotes the charge with the appropriate sign, so
that e = —|e| for an electron.



Notation Xv

Electron mass m =9.11 x 107 % g.

Planck’s constant & = 1.055 X 1077 erg. sec.

Fine-structure constant a = e*/fc; 1/a = 137.04.

Bohr radius #*/me?=5.292x 10°cm.

Classical electron radius 7, = e¢*/mc?=2.818 x 107" cm.

Compton wavelength of the electron #i/mc = 3.862x 107" cm.

Electron rest energy mc?=0.511x 10°eV.

Atomic energy unit me‘/h*=4.360x 107" erg =27.21 V.

Bohr magneton [e[#/2mc = 9.274 X 107 erg/G.

Proton mass m, = 1.673 x 10™% g.

Compton wavelength of the proton #/m,c =2.103x 10" cm.
. Nuclear magneton |ej#/2m,c = 5.051 x 107 erg/G.

Mass ratio of muon and electron m,/m = 2.068 x 10,

References to volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

QM or Quantum Mechanics =Vol. 3 (Quantum Mechanics, third English
edition, 1977).

ECM = Vol. 8 (Electrodynamics of Continuous Media, English edition, 1960).

PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.
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INTRODUCTION

§ 1. The uncertainty principle in the relativistic case

THE quantum theory described in Volume 3 (Quantum Mechanics) is essentially
non-relativistic throughout, and is not applicable to phenomena involving motion at
velocities comparable with that of light. At first sight, one might expect that the
change to a relativistic theory is possible by a fairly direct generalization of the
formalism of non-relativistic quantum mechanics. But further consideration shows
that a logically complete relativistic theory cannot be constructed without invoking
new physical principles.

Let us recall some of the physical concepts forming the basis of non-relativistic
quantum mechanics (QM, §1). We saw that one fundamental concept is that of
measurement, by which is meant the process of interaction between a quantum
system and a classical object or apparatus, causing the quantum system to acquire
definite values of some particular dynamical variables (coordinates, velocities,
etc.). We saw also that quantum mechanics greatly restricts the possibility that an
electront simultaneously possesses values of different dynamical variables. For
example, the uncertainties Ag and Ap in simultaneously existing values of the
coordinate and the momentum are related by the expressioni AgAp ~h; the
greater the accuracy with which one of these quantities is measured, the less the
accuracy with which the other can be measured at the same time.

It is important to note, however, that any of the dynamical variables of the
electron can individually be measured with arbitrarily high accuracy, and in an
arbitrarily short period of time. This fact is of fundamental importance throughout
non-relativistic quantum mechanics. It is the only justification for using the concept
of the wave function, which is a basic part of the formalism. The physical
significance of the wave function ¢(q) is that the square of its modulus gives the
probability of finding a particular value of the electron coordinate as the result of a
measurement made at a given instant. The concept of such a probability clearly
requires that the coordinate can in principle be measured with any specified
accuracy and rapidity, since otherwise this concept would be purposeless and
devoid of physical significance.

The existence of a limiting velocity (the velocity of light, dénoted by c) leads to
new fundamental limitations on the possible measurements of various physical
quantities (L. D. Landau and R. E. Peierls, 1930).

t Asin QM, §1, we shall, for brevity, speak of an “electron”, meaning any quantum system.
$ In this section, ordinary units are used.



2 Introduction §1
In QM, §44, the following relationship has been derived:
(v'—=v)ApAt ~h, (1.1)

relating the uncertainty Ap in the measurement of the electron momentum and the
duration At of the measurement process itself; v and v’ are the velocities of the
electron before and after the measurement. From this relationship it follows that a
momentum measurement of high accuracy made during a short time (i.e. with Ap
and At both small) can occur only if there is a large change in the velocity as a
result of the measurement process itself. In the non-relativistic theory, this showed
that the measurement of momentum cannot be repeated at short intervals of time,
but it did not at all diminish the possibility, in principle, of making a single
measurement of the momentum with arbitrarily high accuracy, since the difference
v’ — v could take any value, no matter how large.

The existence of a limiting velocity, however, radically alters the situation. The
difference v’ — v, like the velocities themselves, cannot now exceed ¢ (or rather 2c).
Replacing v’ ~ v in (1.1' by ¢, we obtain

ApAt ~ #/c, 1.2)

which determines the highest accuracy theoretically attainable when the momen-
tum is measured by a process occupying a given time At. In the relativistic theory,
therefore, it is in principle impossible to make an arbitrarily accurate and rapid
measurement of the momentum. An exact measurement (Ap — 0) is possible only in
the limit as the duration of the measurement tends to infinity.

There is reason to suppose that the concept of measurability of the electron
coordinate itself must also undergo modification. In the mathematical formalism of
the theory, this situation is shown by the fact that an accurate measurement of the
coordinate is incompatible with the assertion that the energy of a free particle is
positive. It will be seen later that the complete set of eigenfunctions of the
relativistic wave equation of a free particle includes, as well as solutions having the
“correct” time dependence, also solutions having a *‘negative frequency”. These
functions will in general appear in the expansion of the wave packet corresponding
to an electron localized in a small region of space.

It will be shown that the wave functions having a *‘negative frequency”
correspond to the existence of antiparticles (positrons). The appearance of these
functions in the expansion of the wave packet expresses the (in general) inevitable
production of electron-positron pairs in the process of measuring the coordinates
of an electron. This formation of new particles in a way which cannot be detected
by the process itself renders meaningless the measurement of the electron coor-
dinates.

In the rest frame of the electron the least possible error in the measurement of
its coordinates is

Aq ~ himc. (1.3)

This value (which purely dimensional arguments show to be the only possible one)
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corresponds to a momentum uncertainty Ap ~ mc, which in turn corresponds to the
threshold energy for pair production. ) )
In a frame of reference in which the electron is moving with energy ¢, (1.3)

becomes
Aq ~ chfe. 1.4)

In particular, in the limiting ultra-relativistic case the energy is related to the
momentum by ¢ = cp, and

Agq ~ hlp, (1.5)

i.e. the error Aq is the same as the de Broglie wavelength of the particle.t

For photons, the ultra-relativistic case always applies, and the expression (1.5)
is therefore valid. This means that the coordinates of a photon are meaningful only
in cases where the characteristic dimensions of the problem are large in com-
parison with the wavelength. This is just the “classical” limit, corresponding to
geometrical optics, in which radiation can be said to be propagated along definite
paths or rays. In the quantum case, however, where the wavelength cannot be
regarded as small, the concept of coordinates of the photon has no meaning. We
shall see later (§4) that, in the mathematical formalism of the theory, the fact that
the photon coordinates cannot be measured is evident because the photon wave
function cannot be used to construct a quantity which might serve as a probability
density satisfying the necessary conditions of relativistic invariance.

The foregoing discussion suggests that the theory will not consider the time
dependence of particle interaction processes. It will show that in these processes
there are no characteristics precisely definable (even within the usual limitations of
quantum mechanics); the description of such a process as occurring in the course
of time is therefore just as unreal as the classical paths are in non-relativistic
quantum mechanics. The only observable quantities are the properties (momenta,
polarizations) of free particles: the initial particles which come into interaction, and
the final particles which result from the process (L. D. Landau and R. E. Peierls,
1930).

A typical problem as formulated in relativistic quantum theory is to determine
the probability amplitudes of transitions between specified initial and final states
(t > Fx) of a system of particles. The set of such amplitudes between all possible
states constitutes the scattering matrix or S-matrix. This matrix will embody all the
information about particle interaction processes that has an observable physical
meaning (W. Heisenberg, 1938).

There is as yet no logically consistent and complete relativistic quantum theory.
We shall see that the existing theory introduces new physical features into the
nature of the description of particle states, which acquires some of the features of

t The measurements in question are those for which any experimental result yields a conclusion
about the state of the electron; that is, we are not considering coordinate measurements by means of
collisions, when the result does not occur with probability unity during the time of observation.
Although the deflection of a measuring-particle in such cases may indicate the position of an electron,
the absence of a deflection tells us nothing.
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field theory (see §10). The theory is, however, largely constructed on the pattern of
ordinary quantum mechanics. This structure of the theory has yielded good results
in quantum electrodynamics. The lack of complete logical consistency in this
theory is shown by the occurrence of divergent expressions when the mathematical
formalism is directly applied, although there are quite well-defined ways of eli-
minating these divergences. Nevertheless, such methods remain, to a considerable
extent, semiempirical rules, and our confidence in the correctness of the results is
ultimately based only on their excellent agreement with experiment, not on the
internal consistency or logical ordering of the fundamental principles of the theory.



CHAPTER 1

PHOTONS

§2. Quantization of the free eleétromagnetic field

WiTH the purpose of treating the electromagnetic field as a quantum object, it is
convenient to begin from a classical description of the field in which it is
represented by an infinite but discrete set of variables. This description permits the
immediate application of the customary formalism of quantum mechanics. The
representation of the field by means of potentials specified at every point in space
is essentially a description by means of a continuous set of variables.

Let A(r, t) be the vector potential of the free electromagnetic field, which
satisfies the *‘transversality condition”

divA=0. ' Q)
The scalar potential ® =0, and the fields E and H are
E=-A, H=culA 2.2
Maxwell’s equations reduce to the wave equation for A:
AA-3*Alat* =0, .3
In classical electrodynamics (see Fields, §52) the change to the description by
means of a discrete set of variables is brought about by considering the field in a
large but finite volume V.t The following is a brief résumé of the argument.

The field in a finite volume can be expanded in terms of travelling plane waves,
and its potential is then represented by a series

A=¥ (ae™ +ate™), (VX))

where the coefficients a, are functions of the time such that
a~e™, o=k Q.5
The condition (2.1) shows that the complex vectors a, are orthogonal to the

corresponding wave vectors: a, -k =0.
The summation in (2.4) is taken over an infinite discrete set of values of the

t We shall take V = 1, in order to reduce the number of factors in the formulae.

5



