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You say you’ve got a real solution
Well, you know

‘We’d all love to see the plan

You ask me for a contribution
Well, you know

‘We are doing what we can

(John Lennon)

Preface

The forerunner of this book had a modest beginning in July 1977 at the
Discrete Geometry Week (organized by H.S.M. Coxeter) in Oberwolfach,
Germany. There, William Moser distributed a list of 14 problems that he
called RPDG (Research Problems in Discrete Geometry). The problems
had first appeared in a 1963 mimeographed collection of 50 problems pro-
posed by Leo Moser (1921-1970) with the title “Poorly formulated unsolved
problems in combinatorial geometry.” Five new editions of RPDG appeared
between 1977 and 1981, with hundreds of copies mailed to interested ge-
ometers; reviews of RPDG appeared in Mathematics Magazine 53 (1980)
p- 189; American Mathematical Monthly 87 (1980) p. 236; Zentraiblatt fiir
Mathematik Zbl 528.52001 and Mathematical Reviews MR 84¢:51003, MR
85h:52002. The 1986 edition of RPDG reported on the solution of several
outstanding problems in earlier editions and was prepared with the col-
laboration of Janos Pach; the 1993 edition appeared as DIMACS Technical
Report 93-32, 131 pp. We had hoped to publish a book soon thereafter. In-
deed, Paul Erdds, the great problem proposer and collector, wrote a preface
for that book in the expectation that it would soon be published. However,
the book-writing project languished until 2000, when Peter Brass joined
the project; his hard and careful work was instrumental in bringing the
project to a conclusion. The book finally exists.

Many problems had to be left out, for in a subject with an active re-
search community and a tradition of problem proposing it is natural that
the number of open problems explodes over time. Our selection of prob-
lems is subjective, and many areas, such as art gallery problems, Helly-type
questions, stochastic geometry, and problems about convex polytopes, are
completely missing. We decided not to delay further, since a published in-
complete book is more useful than an unpublished book (which would also
be incomplete). Perhaps later in this century we will expand the collection
in a second edition and report then that many current problems have been
solved. Meanwhile, we invite the readers to submit their comments, correc-
tions, and new problems to the site http://www.math.nyu.edu/~pach/.
Whenever it was possible, we tried to give proper credit to the original
problem proposers and problem solvers, but we have surely made many
mistakes. We apologize for them, and we urge our readers to point out any
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error of this kind that they may discover.

Our aim all along has been to achieve a collection of research problems
in discrete geometry containing a statement of each problem, an account
of progress, and an up-to-date bibliography. It was meant to be a resource
for everyone, but particularly for students and for young mathematicians,
to help them in finding an interesting problem for research. Apart from
the important open problems in the field, we have included a large number
of less well known but beautiful questions whose solutions may not require
deep methods. We wish the reader good luck in finding solutions.

We sincerely thank all those who helped us with encouragement, in-
formation, and corrections. These include Boris Aronov, Vojtech Bélint,
Imre Bérany, Andras Bezdek, Kéroly Bezdek, Kéroly Béroczky Jr., Helmut
Brass, Erik Demaine, Adrian Dumitrescu, Herbert Edelsbrunner, Gy6rgy
Elekes, Christian Elsholtz, Gabor Fejes Téth, Eli Goodman, Ronald Gra-
ham, Branko Griinbaum, Heiko Harborth, Martin Henk, Aladdr Heppes,
Ferran Hurtado, Dan Ismailescu, Gyula Kdrolyi, Arnfried Kemnitz, Wlodz-
imierz Kuperberg, Endre Makai, Rados Radoi¢ié, Andrej Raigorodskii,
Imre Z. Ruzsa, Micha Sharir, Alexander Soifer, J6zsef Solymosi, Kon-
rad Swanepoel, Gdbor Tardos, Csaba D. Téth, Géza T6th, Pavel Valtr,
Katalin Vesztergombi, Jorg Wills, Chuanming Zong, and two students,
Zheng Zhang and Mehrbod Sharifi. We apologize to those whose names
have inadvertently been left out. We thank Marion Blake, David Kramer,
Ina Lindemann, Paula Moser, and Mark Spencer for valuable editorial assis-
tance, and Danielle Spencer for her help in preparing the cover design. We
thank the mathematics libraries at the Free University Berlin, the Techni-
cal University Braunschweig, the Mathematische Forschungsinstitut Ober-
wolfach and at Courant Institute, New York University; our work would
not have been possible without access to these excellent libraries. We also
thank all our friends who obtained literature for us that we could not get
ourselves.

This book is dedicated to Gisela and Helmut Brass and to Heiko Har-
borth (respectively parents and advisor of Peter Brass); to Beryl Moser and
Leo Moser (respectively wife and brother of William Moser); to Kléra and
Zsigmond P4l Pach (parents of Janos Pach).

City College New York Peter Brass
McGill University William Moser
City College New York, NYU, and Rényi Institute Jénos Pach



Preface to an Earlier Version of RPDG

My friend Leo Moser (1921-1970) was an avid creator, collector, and solver
of problems in number theory and combinatorics. At the 1963 Number The-
ory Conference in Boulder, Colorado, he distributed mimeographed copies
of his list of fifty problems, which he called “Poorly formulated unsolved
problems in combinatorial geometry.” Although some parts of this col-
lection have been reproduced several times, the entire list in its original
form appeared in print only recently (Discrete Applied Math. 31 (1991),
201-225).

After Leo Moser’s death, his brother Willy put together his Research
Problems in Discrete Geometry (RPDG), which was based on some ques-
tions proposed by Leo and was first distributed among the participants of
the Discrete Geometry week in Oberwolfach, July 1977. This collection has
been revised and largely extended by W. Moser and J. Pach. It has become
an excellent resource book of fascinating open problems in combinatorial
and discrete geometry which had nine different editions circulating in more
than a thousand copies. In the last fifteen years it has reached virtually
everybody interested in the field, and has generated a lot of research. In ad-
dition to the many new questions, a number of important but badly forgot-
ten problems have also been publicized in these collections. They include
Heilbronn’s (now famous) triangle problem and my old questions about the
distribution of distances among n points in the plane, just to mention two
areas where much progress has been made recently. The present book is an
updated “final” version of a large subset of the problems that appeared in
the previous informal editions of Research Problems in Discrete Geometry.
The authors have adopted a very pleasant style that allows the reader to
get not only a feel for the problems but also an overview of the field.

And now let me say a few words about discrete geometry. As a matter
of fact, I cannot even give a reasonable definition of the subject. Perhaps it
is not inappropriate to recall the following old anecdote. Some years ago,
when pornography was still illegal in America, a judge was asked to define
pornography. He answered: “I cannot do this, but I sure can recognize it
when 1 see it.”

Perhaps discrete geometry started with the feud between Newton and
Gregory about the largest number of solid unit ball spheres that can be
placed to touch a “central” unit ball sphere. Newton believed this number
to be twelve, while Gregory believed it was thirteen. This controversy
was settled in Newton’s favor only late in the last century. Even today
little is known about similar problems in higher dimensions, although these
questions were kept alive by the nineteenth century crystallographers and
have created a lot of interest among physicists and biologists.

Minkowski’s book Geometrie der Zahlen (1896) opened a new and im-
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portant chapter in mathematics. It revealed some surprising connections
between number theory and convex geometry, particularly between dio-
phantine approximation and packing problems. This branch of discrete
geometry was developed in books by Cassels (An Introduction to the Geo-
metry of Numbers), Lekkerkerker (Geometry of Numbers), Coxeter (Regu-
lar Polytopes), and L. Fejes Téth (Lagerungen in der Ebene, auf der Kugel
und im Raum). “Alles Konvexe interessiert mich,” said Minkowski, and I
share his feeling.

Another early source is Sylvester’s famous “orchard problem.” In 1893
he also raised the following question: Given n points in the plane, not all
on a line, can one always find a line passing through exactly two points?
This problem remained unsolved and was completely forgotten before I
rediscovered it in 1933. I was reading the Hilbert and Cohn-Vossen book
(Anschauliche Geometrie) when the question occurred to me, and I thought
it was new. It looked innocent, but to my surprise and annoyance I was
unable to resolve it. However, I immediately realized that an affirmative
answer would imply that any set of n noncollinear points in the plane
determines at least n connecting lines. A couple of days later, Tibor Gallai
came up with an ingenious short proof which turned out to be the first
solution of Sylvester’s problem. This was the starting point of many fruitful
investigations about the incidence structure of sets of points and lines,
circles, etc. Recently, these results have attracted a lot of attention, because
they proved to be relevant in computational geometry.

In 1931, E. Klein observed that from any five points in the plane in
general position one can choose four that determine a convex quadrilateral,
and she asked whether the following generalization was true: For any k > 4
there exists an integer ny such that any ng-element set of points in general
position in the plane contains the vertex set of a convex k-gon. Szekeres and
I managed to establish this result; for the first proof we needed, and Szek-
eres rediscovered, Ramsey’s theorem! Our paper raised many fascinating
new questions which, I think, gave a boost to the development of combina-
torial geometry and extremal combinatorics. A large variety of problems of
this kind is discussed in the books of Hadwiger and Debrunner (Combina-
torial Geometry in the Plane, translated and extended by Klee), Griinbaum
(Convex Polytopes), Croft, Falconer, and Guy (Unsolved Problems in Geo-
metry), and in the collection of my papers (The Art of Counting). I hope
that the reader will forgive me that the above sketch of the recent history
of combinatorial and discrete geometry is very subjective and, of course,
overemphasizes my own contribution to the field.

There are certain areas of mathematiecs where individual problems are
less important. However, I feel that problems play a very important role in
elementary number theory and geometry. Hilbert and Hermann Weyl had
the same opinion, but many eminent mathematicians disagree. 1 cannot
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decide who is right, but I am certainly on the side of Griinbaum in his old
controversy with Dieudonné, who claimed that geometry is “dead.” We
are convinced that if a subject is rich in simple and fascinating unsolved
problems, then it has a great future! The present collection of research
problems by Moser and Pach proves beyond doubt the richness of discrete
geometry.

I wish the reader good luck with the solutions!

Budapest, May 1991
Paul Erdés
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0. Definitions and Notations

In this short chapter, we have collected some definitions and notations that
are used in many places in this book. All of the concepts are quite standard;
we list them for completeness and to explain the notation.

A set C is convex if for any two points p, g € C the entire line segment
pq is also contained in C. A set C is star-shaped if for some point p € C
and all points ¢ € C, the entire line segment pq is also contained in C. A
set is a convex body if it is convex, compact and has nonempty interior.
In general, a body is a set homeomorphic to a ball. Let IR¢ stand for the
d-dimensional Euclidean space. In IR%, the d-dimensional ball of radius r
around the origin is denoted by B%(r), and the unit ball B4(1) by B%. The
two-dimensional ball B? is called a circle (we try to avoid the word “disk,”
which is often used in the literature for plane convex bodies).

Two bodies are nonoverlapping if they do not have an interior point in
common, and they touch each other if they are nonoverlapping but have a
common boundary point.

Some important functions defined for convex bodies C are the volume
Vol(C); the diameter diam(C), which is the maximum distance between
two points of C; the width width(C), which is the smallest distance of two
parallel hyperplanes such that C lies in the slab between them; and the
inradius and circumradius, which are the radii of the largest ball contained
in C' and the smallest ball containing C.

The Minkowski sum X + Y of two sets is the set {z+y | r € X,y €
Y}. Similarly, AX = {Az | z € X} denotes a scaled copy of X, and
—X = -1X = {—z | ¢ € X} denotes a copy of X reflected through the
point 0. These operations depend on the choice of the origin 0, but the
results are the same up to translation, and the operations should be viewed
as acting on translation equivalence classes.

The Hausdorff distance of two compact sets X,Y C R? is defined by

Haus-

dio® (Xv Y)= ma‘x( sup inf deyci(z,y) , sup inf deucl(xa y))
zeX yeY yeY zeX

An alternative description using Minkowski sums is

Haus-

4 (X,Y) = min{,\ >0|X+ABYDY and Y + ABY D X}.

Some important classes of set mappings are translations, homotheties, con-
gruences, similarities, and affine maps. A translate of a set X C R% is a
set X +t, t € R%, a homothetic copy is a scaled translate AX + ¢ with
A > 0. Negative homothetic copies with A < 0 are allowed only where it is
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explicitly stated. A congruence is an isometry (reflections are allowed), and
a similarity is a scaled congruence. An affinity is a nondegenerate linear
transformation followed by a translation.

A symmetry of a set is a congruence that maps the set onto itself. A
set X is called centrally symmetric about the origin if X = —X. In general,
X is centrally symmetric about the point (vector) t if X = —X + 2¢.

A lattice A can be viewed in two ways, as a set of translations or as a
set of points, the lattice points.

As a set of translations, A is the set of all linear combinations of the
elements of a basis of the space with integer coefficients, which is the group
of translations generated by this basis. For any d linearly independent
vectors u1, ..., U4 in d-dimensional space, let A = A(uy, ..., uq) denote the
lattice generated by them, so

A:{m1u1+---+mdud|m1,...,md€Z}.

A fundamental domain of A is a closed set whose translates by the elements
of A tile the space.

As a set of points, A is the orbit of any point p under the above set of
translations, that is, the set {p + miuy + - + mqug | m1,...,myq € Z}.
Thus, the lattice points of A are a translation equivalence class of point
sets.

The parallelepiped P induced by the 2¢ vertices of the form mjui +
-+« + mgug, where m; € {0,1} for every i, is called a fundamental par-
allelepiped of the lattice. The same lattice can of course be generated in
many different ways and, therefore, has infinitely many different fundamen-
tal parallelepipeds. All of them are fundamental domains of the lattice, seen
as a group of translations, and therefore all of them have the same volume

Vol(P) = |det(ug, ..., ug)|.

The density of a lattice is defined as the reciprocal of this determinant
| det(uq,...,uq)|- This number is equal to the limit of the number of lattice
points in the ball B(r) divided by Vol(B%(r)), as r tends to infinity.

Any lattice similar to the planar lattice generated by two adjacent sides
of a square or equilateral triangle is called a square lattice or a triangular
lattice, respectively.

A finite-dimensional normed space, also called Minkowski space, is a
finite-dimensional linear space X equipped with metric which is translation-
invariant (d(p,q) = d(p + t,q + t) for translations t) and homogeneous
(d(Ap,0) = Ad(p,0) for A > 0). Since d(p,q) = d(p — q,0), this metric is
completely described by the distance of every point z from the origin, which
is called the norm ||z|| = d(z,0). A normed space can be characterized by



