Wan Zhexian

Geometry of Classical Groups over Finite Fields

Second Edition

(有限域上典型群的几何学(第二版))

Wan Zhexian

Geometry of Classical Groups over Finite Fields

Second Edition

(有限域上典型群的几何学(第二版))

Responsible Editor: Lü Hong

Copyright ©2002 by Science Press Published by Science Press 16 Donghuangchenggen North Street Beijing 100717, China

Printed in Beijing

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright owner.

ISBN 7 - 03 - 010595 - 8

Preface to the Second Edition

As applications of the Anzahl theorems in the geometry of classical groups over finite fields some critical problems of finite vector spaces, Moor-Penrose generalized inverses of matrices over a finite field, and the representation of a form (bilinear, alternate, hermitian, or quadratic, etc.) by another form of the same kind over a finite field are added in this edition.

Wan Zhexian Beijing, 2002

Preface

This monograph is a comprehensive survey of the results obtained on the geometry of classical groups over finite fields mainly in the 1960s and early 1990s.

For the convenience of the readers I start with the affine geometry and projective geometry over finite fields in Chapters 1 and 2, respectively. Among other things, the affine classification of quadrics is included in Chapter 1, and conics and ovals are studied in detail in Chapter 2. From Chapter 3 and onwards the geometries of symplectic, pseudo-symplectic, unitary, and orthogonal groups are studied in succession. The book ends with two appendices, on the axiomatic projective geometry, and on polar spaces and finite generalized quadrangles, respectively.

Now I shall say a few words about the problems we are going to study in Chapters 3–7, and in addition give some historical remarks.

Let \mathbb{F}_q be the finite field with q elements, where q is a power of a prime, $\mathbb{F}_q^{(n)}$ be the n-dimensional row vector space over \mathbb{F}_q , and $GL_n(\mathbb{F}_q)$ be the general linear group of degree n over \mathbb{F}_q . It is well-known that $GL_n(\mathbb{F}_q)$ has an action on $\mathbb{F}_q^{(n)}$ and an induced action on the subspaces of $\mathbb{F}_q^{(n)}$, which are thus subdivided into orbits under the action of $GL_n(\mathbb{F}_q)$. It is natural to ask:

- (i) How should the orbits be described?
- (ii) How many orbits are there?
- (iii) What are the lengths of the orbits?
- (iv) What is the number of subspaces in any orbit contained in a given subspace?

The answers to these questions are classical and well-known for $GL_n(\mathbb{F}_q)$,

iv Preface

but a natural question arises: If $GL_n(\mathbb{F}_q)$ is replaced by any one of the other classical groups: the symplectic group $Sp_{2\nu}(\mathbb{F}_q)$ (where $n=2\nu$), the pseudo-symplectic group $Ps_{2\nu+\delta}(\mathbb{F}_q)$ (where q is even, $n=2\nu+\delta$, and $\delta=1$ or 2), the unitary group $U_n(\mathbb{F}_q)$ (where q is a square), and the orthogonal group $O_{2\nu+\delta}(\mathbb{F}_q)$ (where $n=2\nu+\delta$ and $\delta=0,1$, or 2), then what will the answers of the four problems mentioned above be? This is what we shall analyse in Chapters 3–7.

In 1937 E. Witt studied problem (i) for the orthogonal group $O_n(F,S)$ defined by an $n \times n$ nonsingular symmetric matrix S over any field F of characteristic $\neq 2$. His famous theorem asserts that two subspaces P_1 and P_2 of $F^{(n)}$ belong to the same orbit under the action of $O_n(F,S)$ if and only if they have the same dimension and $P_1S^tP_1$ and $P_2S^tP_2$ are cogredient, where P_1 and P_2 also denote matrix representations of the subspaces P_1 and P_2 , respectively. Later C. Arf, J. Dieudonné, L. K. Hua, et al. extended Witt's theorem to other classical groups.

In 1958 B. Segre studied problem (iii) for orthogonal groups over any finite field \mathbb{F}_q but he restricted himself to consider only totally isotropic and totally singular subspaces where q is odd and even, respectively. He used the geometrical method and geometrical language. In his address at the International Congress of Mathematicians, Edinburgh, 1958, he announced his formula for the number of subspaces of a given dimension lying on a non-degenerate quadratic in the projective space over any finite field without any restriction on its characteristic.

In the mid-1960s problem (iii) was attacked by three of my students at that time, Z. Dai, X. Feng, and B. Yang, and myself. We obtained the closed formulas for the lengths of all the orbits of subspaces under the action of the symplectic, unitary, and orthogonal groups over finite fields. Our method is algebraic. Closed formulas for problem (iv), i.e., for the number of subspaces in any orbit contained in a given subspace were also obtained by myself in 1966.

In the early 1990s I studied problems (i) and (ii). Conditions satisfied by the numerical invariants characterizing the orbits of subspaces under the symplectic, unitary, and orthogonal groups over finite fields were obtained and then the number of orbits was computed. Problems (i) – (iii) for the pseudo-symplectic groups over finite fields of characteristic 2 were studied together with Y. Liu. Moreover, I also studied problem (iv) for the pseudo-symplectic group and problems (i) – (iv) for the singular symplectic, pseudo-symplectic, unitary, and orthogonal groups.

Preface v

My interest in the geometry of classical groups over finite fields was arisen by block designs in the mid-1960s and by authentication codes in the early 1990s. By using it, many interesting block designs and authentication codes can be constructed. However, due to the limitation of the thickness of the book only some simple authentication codes constructed from the geometry of classical groups over finite fields are included in this monograph as examples. Using the geometry of classical groups over finite fields one can also construct projective codes with a few distinct weights and study the weight hierarchies of them; they are, however, not included in this monograph.

A large portion of the book is adopted from the lecture notes of a course entitled "Finite Geometry" which I gave at the Department of Information Theory, Lund University. I would like to express my sincere gratitude to Professor Rolf Johannesson who invited me to visit Lund and to give the course and encouraged me to write the present book. My visit in Lund is most fruitful and many of the results on the geometry of classical groups over finite fields that I obtained in Lund are compiled in the present book. The author is also deeply indebted to Mrs. Lena Månsson for her beautiful typesetting, careful and hard work, and most of all her patience and cooperation.

Lund, 1993

Wan Zhexian (Zhe-Xian Wan)

Contents

Preface	e to the Second Edition	j				
Preface	a.	iii				
Chapt	er 1 Affine Geometry over Finite Fields	1				
1.1	Vector Spaces and Matrices over Finite Fields					
1.2	Affine Spaces and Affine Groups over Finite Fields	8				
1.3	Quadrics in $AG(n, \mathbb{F}_q)$ for q Odd $\dots \dots \dots \dots \dots$					
1.4						
1.5	Comments	57				
1.6	Exercises	58				
Chapt	er 2 Projective Geometry over Finite Fields	61				
2.1	Projective Spaces and Projective Groups over Finite Fields					
		61				
2.2	Quadrics in $PG(n, \mathbb{F}_q)$	78				
$^{2.3}$	Conics in $PG(2, \mathbb{F}_q)$	84				
2.4	Ovals in $PG(2, \mathbb{F}_q)$	92				
2.5	Comments	103				
2.6	Exercises	104				
Chapt		107				
3.1	Symplectic Groups and Symplectic Spaces over Finite Fields	107				

viii Contents

3.2	Anzahl Theorems in Symplectic Geometry over Finite Fields		
3.3	Singular Symplectic Geometry over Finite Fields 127		
3.4	Symplectic Polarities and Polar Spaces Arising from Them		
3.5	Comments		
3.6	Exercises		
Chapt	er 4 Geometry of Pseudo-symplectic Groups over Finite Fields of Characteristic 2		
4.1	Pseudo-symplectic Groups over Finite Fields of		
	Characteristic 2		
4.2	Pseudo-symplectic Geometry over Finite Fields of Characteristic 2		
4.3	Singular Pseudo-symplectic Geometry over Finite Fields of Characteristic 2		
4.4	Pseudo-symplectic Geometry over Finite Fields of Characteristic 2 Again		
4.5	Pseudo-symplectic Polarities		
4.6	Comments		
4.7	Exercises		
Chapt	er 5 Geometry of Unitary Groups over Finite Fields		
	220		
5.1	Unitary Geometry over Finite Fields		
5.2	Anzahl Theorems in Unitary Geometry over Finite Fields		
5.3	Singular Unitary Geometry over Finite Fields 238		
5.4	Unitary Polarities and Polar Spaces Arising from Them 243		
5.5	Hermitian varieties in $PG(n, \mathbb{F}_{\!q^2})$ and $AG(n, \mathbb{F}_{\!q^2})$ 246		
5.6	Comments		
5.7	Exercises		
Chapt	er 6 Geometry of Orthogonal Groups over Finite		

6.1	Characteristic					
6.2	Anzahl Theorems in Orthogonal Geometry over Finite Fields of Odd Characteristic					
6.3	Singular Orthogonal Geometry over Finite Fields of Odd Characteristic					
6.4	Orthogonal Polarities and Polar Spaces Arising from Them					
6.5	Comments					
6.6	Exercises					
Chapt	er 7 Geometry of Orthogonal Groups over Finite					
	Fields of Characteristic 2					
7.1	Orthogonal Geometry over Finite Fields of Characteristic 2					
7.2	Anzahl Theorems in Orthogonal Geometry over Finite Fields of Characteristic 2					
7.3	Singular Orthogonal Geometry over Finite Fields of Characteristic 2					
7.4	Polar Spaces Arising from Orthogonal Geometry over Finite Fields of Characteristic 2					
7.5	Comments					
7.6	Exercises					
Appen	dix A Axiomatic Projective Geometry 347					
A.1	Incidence Structures					
A.2	Axioms of Projective Planes and the Principle of Duality 348					
A.3	Finite Projective Planes					
A.4	Collineations in Projective Planes					
A.5	Desargues Planes					
A.6	Projective Spaces					
Appen	dix B Polar Spaces and Generalized Quadrangles 364					
	Polar Spaces					
	Generalized Quadrangles					

x Contents

Appendix C		Critical Problems	80			
C.1	A Critic	cal Problem in Finite Vector Spaces	80			
C.2	Critical	Problems in Finite Unitary Spaces	85			
C.3	A Critical Problem in Finite Symplectic Spaces					
C.4	Comme	nts	94			
Appen	dix D	Moor-Penrose Generalized Inverses of Matrices over Finite Fields	95			
D.1	Definiti	on and Properties	95			
D.2	Constru	Construction of Enumeration of M-P Invertible Matrices $$ 400				
D.3	Generalization to Matrices over \mathbb{F}_{q^2}					
D.4	Comments					
Appen	dix E	Representations of Forms by Forms in a Finite Field 4	07			
E.1	Represe	entations of Bilinear Forms	07			
E.2	Representations of Alternate Forms					
E.3	Representations of Hermitian Forms 416					
E.4	Representations of Quadratic Forms (Odd Characteristic Case)					
E.5	Representations of Quadratic Forms (Even Characteristic Case)					
E.6	Representations of Symmetric Bilinear Forms over Finite Fields of Even Characteristic					
E.7	Comments					
E.8	Exercises					
Bibliog	raphy	4	31			
Notation						
Index		4	42			

Chapter 1

Affine Geometry over Finite Fields

1.1 Vector Spaces and Matrices over Finite Fields

Let \mathbb{F}_q be the finite field with q elements, where q is a power of a prime, and n a positive integer. We use

$$\mathbb{F}_{q}^{(n)} = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{F}_{q}, i = 1, 2, \dots, n\}$$

to denote the n-dimensional row vector space over \mathbb{F}_q formed by the set of all n-tuples (or n-dimensional row vectors)

$$(x_1, x_2, \dots, x_n), x_i \in \mathbb{F}_q, i = 1, 2, \dots, n,$$

over \mathbb{F}_q with addition and scalar multiplication defined by

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

 $x(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n),$

where $x, x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in \mathbb{F}_q$. Let

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1),$$

then e_1, e_2, \ldots, e_n form a basis of $\mathbb{F}_q^{(n)}$, i.e., any vector (x_1, x_2, \ldots, x_n) of $\mathbb{F}_q^{(n)}$ can be written as a linear combination of e_1, e_2, \ldots, e_n with coefficients in \mathbb{F}_q :

$$(x_1, x_2, \ldots, x_n) = x_1 e_1 + x_2 e_2 + \cdots + x_n e_n,$$

and the expression is unique. Of course, any n linearly independent vectors in $\mathbb{F}_q^{(n)}$ form a basis of $\mathbb{F}_q^{(n)}$. Clearly, $\mathbb{F}_q^{(n)}$ has altogether q^n vectors.

Now let P be an m-dimensional vector subspace of $\mathbb{F}_q^{(n)}$, then we write $\dim P = m$. Let v_1, v_2, \ldots, v_m be a basis of P. We notice that v_1, v_2, \ldots, v_m are vectors in $\mathbb{F}_q^{(n)}$. We usually use the $m \times n$ matrix

$$\left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_m \end{array}\right)$$

to represent the vector subspace P, write

$$P = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_m \end{array} \right),$$

i.e., we use the same letter P to denote a matrix which represents the vector subspace P, and call the matrix P a matrix representation of the vector subspace P. It should be noted that a matrix representing an m-dimensional vector subspace is an $m \times n$ matrix of rank m. Of course, two $m \times n$ matrices P and Q both of rank m represent the same m-dimensional vector subspace, if and only if there is an $m \times m$ nonsingular matrix A such that

$$P = AQ$$
.

Obviously, any m-dimensional vector subspace contains exactly q^m vectors.

Let P_1 and P_2 be two vector subspaces of $\mathbb{F}_q^{(n)}$. The set of vectors belonging to both P_1 and P_2 is a vector subspace of $\mathbb{F}_q^{(n)}$, called the *intersection* of P_1 and P_2 and denoted by $P_1 \cap P_2$. The set of vectors which can be written as sums of a vector of P_1 and a vector of P_2 is also a vector subspace of $\mathbb{F}_q^{(n)}$, called the *join* of P_1 and P_2 and denoted by $P_1 + P_2$. We have the dimension formula

$$\dim P_1 + \dim P_2 = \dim (P_1 \cap P_2) + \dim (P_1 + P_2).$$

The set of $n \times n$ nonsingular matrices over \mathbb{F}_q forms a group under matrix multiplication, called the *general linear group* of degree n over \mathbb{F}_q and denoted by $GL_n(\mathbb{F}_q)$. Elements of $GL_n(\mathbb{F}_q)$ can be regarded as linear transformations of $\mathbb{F}_q^{(n)}$. In fact, let $T \in GL_n(\mathbb{F}_q)$, then T carries (or

transforms) the vector (x_1, x_2, \ldots, x_n) of $\mathbb{F}_q^{(n)}$ into $(x_1, x_2, \ldots, x_n)T$. That is, we have a map

$$\mathbb{F}_q^{(n)} \times GL_n(\mathbb{F}_q) \to \mathbb{F}_q^{(n)}$$
$$((x_1, x_2, \dots, x_n), T) \mapsto (x_1, x_2, \dots, x_n)T.$$

We also say that there is an action of $GL_n(\mathbb{F}_q)$ on $\mathbb{F}_q^{(n)}$, or $GL_n(\mathbb{F}_q)$ acts on $\mathbb{F}_q^{(n)}$. This action induces an action of $GL_n(\mathbb{F}_q)$ on the set of $m \times n$ matrices over \mathbb{F}_q and also on the set of m-dimensional vector subspaces of $\mathbb{F}_q^{(n)}$: if $T \in GL_n(\mathbb{F}_q)$ and P is an $m \times n$ matrix over \mathbb{F}_q or an m-dimensional vector subspace of $\mathbb{F}_q^{(n)}$, then T carries P into PT.

Theorem 1.1. If $T \in GL_n(\mathbb{F}_q)$ and P is an $m \times n$ matrix of rank m over \mathbb{F}_q , then PT is also an $m \times n$ matrix of rank m. Furthermore, if P and Q are both $m \times n$ matrices of rank m over \mathbb{F}_q , then there is an element $T \in GL_n(\mathbb{F}_q)$ such that P = QT.

Proof. The first statement is clear from linear algebra. We prove the second statement only. Write

$$P = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix},$$

where v_1, v_2, \ldots, v_m are the m rows of P and u_1, u_2, \ldots, u_m are the m rows of Q. Since P is of rank m, v_1, v_2, \ldots, v_m are linearly independent. Thus there exist n-m vectors $v_{m+1}, v_{m+2}, \ldots, v_n$ such that the n vectors $v_1, v_2, \ldots, v_m, v_{m+1}, v_{m+2}, \ldots, v_n$ are linearly independent. Then

$$\left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_n \end{array}\right)$$

is an $n \times n$ nonsingular matrix. Similarly, since Q is also of rank m, there exist n-m vectors $u_{m+1},u_{m+2},\ldots,u_n$ such that

$$\left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_n \end{array}\right)$$

is also an $n \times n$ nonsingular matrix. Let

$$T = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}^{-1} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix},$$

then $T \in GL_n(\mathbb{F}_q)$ and P = QT.

Corollary 1.2. The set of all non-zero vectors of $\mathbb{F}_q^{(n)}$ forms an *orbit*, i.e., a *transitive set*, under $GL_n(\mathbb{F}_q)$. The zero vector $(0,0,\ldots,0)$ is left fixed by every element of $GL_n(\mathbb{F}_q)$.

Theorem 1.3. The set of all m-dimensional vector subspaces of $\mathbb{F}_q^{(n)}$ forms an orbit under $GL_n(\mathbb{F}_q)$.

Proof. Use matrix representations of vector subspaces of $\mathbb{F}_q^{(n)}$.

Theorem 1.4. The number of orbits of subspaces of $\mathbb{F}_q^{(n)}$ is n+1. \square

Now let us prove some Anzahl theorems in $\mathbb{F}_q^{(n)}$.

Let N(m,n) be the number of m-dimensional vector subspaces in $\mathbb{F}_q^{(n)}$. Our goal is to compute N(m,n). Let n(m,n) be the number of $m \times n$ matrices of rank m over \mathbb{F}_q . We know that two $m \times n$ matrices P and Q both of rank m represent the same m-dimensional subspace if and only if there is an $m \times m$ nonsingular matrix A such that P = AQ, thus

$$n(m, n) = |GL_m(\mathbb{F}_q)| N(m, n),$$

where $|GL_m(\mathbb{F}_q)|$ is the order of $GL_m(\mathbb{F}_q)$. Clearly

$$|GL_m(\mathbb{F}_q)| = n(m,m).$$

Thus to compute N(m,n) it is sufficient to compute n(m,n).

Lemma 1.5. Let $m \leq n$. Then the number of $m \times n$ matrices of rank m over \mathbb{F}_q is

$$n(m,n) = q^{m(m-1)/2} \prod_{i=n-m+1}^{n} (q^i - 1).$$

Proof. Let P be an $m \times n$ matrix of rank m. Write

$$P = \left(\begin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_m \end{array}\right),$$

where v_1, v_2, \ldots, v_m are the m rows of P. If we want to enumerate how many possible P's there are, it is sufficient to enumerate how many possible v_1 's there are, and once a v_1 is chosen to enumerate how many possible v_2 's there are, etc. Now, v_1 can be any non-zero vector of $\mathbb{F}_q^{(n)}$, thus there are q^n-1 possible choices for v_1 . Once v_1 is chosen, v_2 can be any vector of $\mathbb{F}_q^{(n)}$ which is linearly independent with v_1 , thus there are q^n-q possible choices of v_2 . After v_1 and v_2 are chosen, v_3 can be any vector of $\mathbb{F}_q^{(n)}$ which is linearly independent with v_1 and v_2 ; since v_1 and v_2 are linearly independent, there are q^n-q^2 possible choices of v_3 . Proceeding in this way, finally after $v_1, v_2, \ldots, v_{m-1}$ are chosen, v_m can be any vector of $\mathbb{F}_q^{(n)}$ which is linearly independent with $v_1, v_2, \ldots, v_{m-1}$; but since $v_1, v_2, \ldots, v_{m-1}$ are linearly independent, there are q^n-q^{m-1} possible choices of v_m . Therefore

$$n(m,n) = (q^{n} - 1)(q^{n} - q)(q^{n} - q^{2})\dots(q^{n} - q^{m-1})$$
$$= q^{m(m-1)/2} \prod_{i=n-m+1}^{n} (q^{i} - 1).$$

From Lemma 1.5 follows immediately

Theorem 1.6.

$$|GL_n(\mathbb{F}_q)| = q^{n(n-1)/2} \prod_{i=1}^n (q^i - 1).$$

Proof. In fact.

$$\mid GL_n(\mathbb{F}_q)\mid = n(n,n).$$

此为试读,需要完整PDF请访问: www.ertongbook