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Preface

This book is dedicated to the study of Banach spaces.

While this is an introduction, because we trace this study back to its origins,
it is indeed a “specialized course”,! in the sense that we assume that the reader
is familiar with the general notions of Functional Analysis, as taught in late
undergraduate or graduate university programs. Essentially, we assume that
the reader is familiar with, for example, the first ten chapters of Rudin’s book,
Real and Complex Analysis (RubIN 2); QUEFFELEC—ZUILY would also suffice.

It is also a “specialized course™ because the subjects that we have chosen to
study are treated in depth.

Moreover, as this is a textbook, we have taken the position to completely
prove all the results “from scratch™ (i.e. without referring within the proof to
a “well-known result” or admitting a difficult auxiliary result), by including
proofs of theorems in Analysis, often classical, that are not usually taught
in French universities (as, for example, the interpolation theorems and the
Marcel Riesz theorem in Chapter 7 of Volume 1, or Rademacher’s theorem
in Chapter 1 of Volume 2). The exceptions are a few results at the end of the
chapters, which should be considered as complementary, and are not used in
what follows.

We have also included a relatively lengthy first chapter introducing the
fundamental notions of Probability.

As we have chosen to illustrate our subject with applications to “thin sets”
coming from Harmonic Analysis, we have also included in Volume 1 an Annex
devoted to compact Abelian groups.

This makes for quite a thick book,? but we hope that it can therefore be used
without the reader having to constantly consult other texts.

! The French version of this book appeared in the collection “Cours Spécialisés” of the Société
N Mathématique de France.
< However, divided into two parts in the English version.
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We have emphasized the aspects linked to Analysis and Probability; in
particular, we have not addressed the geometric aspects at all; for these we
refer, for example, to the classic DAy, to BEAUZAMY or to more specialized
books such as BENYAMINI-LINDENSTRAUSS, DEVILLE—GODEFROY—ZIZLER Or
PISIER 2.

We have hardly touched on the study of operators on Banach spaces,
for which we refer to TOMCZAK-JAEGERMANN and to PISIER 2; DIESTEL-
JARCHOW-TONGE and PIETSCH-WENZEL are also texts in which the part
devoted to operators is more important. DUNFORD—SCHWARTZ remains a very
good reference.

Even though Probability plays a large role here, this is not a text about Prob-
ability in Banach spaces, a subject perfectly covered in LEDOUX—TALAGRAND.

Probability and Banach spaces were quick to get on well together. Although
the study of random variables with values in Banach spaces began as early
as the 1950s (R. Fortet and E. Mourier; we also cite Beck [1962]), their
contribution to the study of Banach spaces themselves only appeared later, for
example, citing only a few, Bretagnolle, Dacunha-Castelle and Krivine [1966],
and Rosenthal [1970] and [1973]. However, it was only with the introduction of
the notions of type and cotype of Banach spaces (Hoffmann-Jgrgensen [1973],
Maurey [1972 b] and [1972 c], Maurey and Pisier [1973]) that they proved to
be intimately linked with Banach spaces.

Moreover, Probability also arises in Banach spaces by other aspects; notably
it allows the derivation of the very important Dvoretzky’s theorem (Chapter 1
of Volume 2), thanks to the concentration of measure phenomenon, a subject
still highly topical (see the recent book of M. Ledoux, The Concentration
of Measure Phenomenon, Mathematical Surveys and Monographs 89, AMS,
2001), dating back to Paul Lévy, and whose importance for Banach spaces
was seen by Milman at the beginning of the 1970s.

We will also use Probability in a third manner, through the method of selec-
tors, due to Erdos around 1955, and afterwards used heavily by Bourgain,
which allows us to make random constructions.

For all that, we do not limit ourselves to the probabilistic aspects; we also
wish to show how the study of Banach spaces and of classical analysis interact
(the construction by Davie, in Chapter 2 of Volume 2, of Banach spaces
without the approximation property is typical in this regard); in particular we
have concentrated on the application to thin sets in Harmonic Analysis.

Even if we have privileged these two points of view, we have nonetheless
tried to give a global view of Banach spaces (with the exception of the

3 Actually, this method traces back at least to Cramér [1935] and [1937].
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geometric aspect, as already mentioned), with the concepts and fundamental
results up through the end of the 1990s.

We point out that an interesting survey of what was known by the mid 1970s
was given by Petczynski and Bessaga [1979].

This book is divided into 14 chapters, preceded by a preliminary chapter
and accompanied by an Annex. The first volume contains the first eight
chapters, including the preliminary chapter and the Annex; the second volume
contains the six remaining chapters. Moreover, it also contains three surveys,
by G. Godefroy, O. Guédon and G. Pisier, on the major results and directions
taken by Banach space theory since the publication of the French version
of this book (2004), as well as an original paper of L. Rodriguez-Piazza on
Sidon sets.

Each chapter is divided into sections, numbered by Roman numerals in
capital letters (I, IT, IIT etc.), and each section into subsections, numbered by
Arabic numerals (I.1 etc.). The theorems, propositions, corollaries, lemmas,
definitions are numbered successively in the interior of each section; for
example in Chapter 5 of Volume 1, Section IV they thus appear successively
in the form: Proposition IV.1, Corollary IV.2, Definition IV.3, Theorem IV.4,
Lemma IV.5, ignoring the subsections. If we need to refer to one chapter from
another, the chapter containing the reference will be indicated.

At the end of each chapter, we have added comments. Certain of these cite
complementary results; others provide a few indications of the origin of the
theorems in the chapter. We have been told that “this is a good occasion to
antagonize a good many colleagues, those not cited or incorrectly cited.” We
have done our best to correctly cite, in the proper chronological order, the
authors of such and such result, of such and such proof. No doubt errors or
omissions have been made; they are only due to the limits of our knowledge.
When this is the case, we ask forgiveness in advance to the interested parties.
We make no pretension to being exhaustive, nor to be working as historians.
These indications should only be taken as incitements to the reader to refer
back to the original articles and as complements to the contents of the course.

The chapters end with exercises. Many of these propose proofs of recent,
and often important, results. In any case, we have attempted to decompose the
proofs into a number of questions (which we hope are sufficient) so that the
reader can complete all the details; just to make sure, in most cases we have
indicated where to find the corresponding article or book.

The citations are presented in the following manner: if it concerns a book,
the name of the author (or the authors) is given in small capitals, for example
BANACH, followed by a number if there are several books by this author:
RuUDIN 3; if it concerns an article or contribution, it is cited by the name of
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the author or authors, followed in brackets by the year of publication, followed
possibly by a lower-case letter: Salem and Zygmund [1954], James [1964 a].

We now come to a more precise description of what will be found in
this book. ‘

In the Preliminary Chapter, we quickly present some useful properties
concerning the weak topology w = o (E,E*) of a Banach space E and the
weak™ topology w* = o (X*, X) in a dual space X*. Principally, we will prove
the Eberlein—Smulian theorem about weakly compact sets and the Krein—
Milman theorem on extreme points. We then provide some information about
filters and countable ordinals.

Chapter 1 of Volume 1 is intended for readers who have never been
exposed to Probability Theory. With the exception of Section V concerning
martingales, which will not be used until Chapter 7, its contents are quite
elementary and very classical; let us say that they provide “Probability for
Analysts.” Moreover, in this book, we use little more than (but intensively!)
Gaussian random variables (occasionally stable variables), and the Bernoulli
or Rademacher random variables. The reader could refer to BARBE-LEDOUX
or to REvuz.

Section III provides the theorems of Kolmogorov for the convergence
of series of independent random variables, and the equivalence theorem of
Paul Lévy.

In Section IV, we show Khintchine’s inequalities, which, even if elementary,
are of capital importance for Analysis. We also find here the majorant theorem
(Theorem IV.5) which will be very useful throughout the book.

Section V, a bit delicate for a novice reader of Probability, remains quite
classical; we introduce martingales and prove Doob’s theorems about their
convergence.

In Chapter 2 (Volume 1) we begin the actual study of Banach spaces. We
treat the Schauder bases, which provide a common and very practical tool.

After having shown in Section II that the projections associated with a basis
are continuous and given a few examples (canonical bases of cg, £,,, Haar basis
in L (0, 1), Schauder basis of C([0, 1])), we prove that the space C([0, 1]) is
universal for the separable spaces, i.e. any separable Banach space is isometric
to a subspace of C([0, 1]).

In Section III, we see how the use of bases, or more generally of basic
sequences, allows us to obtain structural results; notably, thanks to the
Bessaga—Petczynski selection theorem, to show that any Banach space con-
tains a subspace with a basis. We next show a few properties of the spaces cg
and £,. Finally, we see how the spaces possessing a basis behave with respect
to duality; this leads to the notions of shrinking bases and boundedly complete
bases and to the corresponding structure theorems of James.
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In Chapter 3 (Volume 1), we study the properties of unconditional conver-
gence (i.e. commutative convergence) of series in Banach spaces.

After having given different characterizations of this convergence (Propo-
sition I1.2) and showed the Orlicz—Pettis theorem (Theorem II.3) in Section
II, we introduce in Section III the notion of unconditional basis, and show,
in particular, that the sequences of centered independent random variables are
basic and unconditional in the spaces L7 (IP).

In Section IV, we study in particular the canonical basis of cp, and prove
the theorems of Bessaga and Petfczyniski which, on one hand, characterize the
presence of ¢ within a space by the existence of a scalarly summable sequence
that is not summable, and, on the other hand, state that a dual space containing
cp must contain .

In Section V, we describe the James structure theorems characterizing,
among the spaces having an unconditional basis, those containing cg, or €1,
or those that are reflexive.

All of the above work was done before 1960 and is now very classical.

In Section VI, we prove the Gowers dichotomy theorem, stating that
every Banach space contains a subspace with an unconditional basis
or a hereditarily indecomposable subspace (that is, none of its infinite-
dimensional closed subspaces can be decomposed as a direct sum of infinite-
dimensional closed subspaces). In addition, we provide a sketch of the
proof of the homogeneous subspace theorem: every infinite-dimensional
space that is isomorphic to all of its infinite-dimensional subspaces is
isomorphic to £;.

In Chapter 4 (Volume 1), we study random variables with values in Banach
spaces.

Section II essentially states that the properties of convergence in probability,
almost surely, and in distribution, seen in Chapter 1 in the scalar case can
be generalized “as such” for the vector-valued case. Prokhorov’s theorem
(Theorem I1.9) characterizes the families of relatively compact probabilities
on a Polish space. The conditional expectation, more delicate to define than in
the scalar case, is introduced, as well as martingales; the vectorial version of
Doob’s theorem (Theorem I1.12) then easily follows from the scalar case.

In Section IIT we describe the important symmetry principle, also known as
the Paul Lévy maximal inequality, which allows us to obtain the equivalence
theorem for series of independent Banach-valued random variables between
convergence in distribution, almost sure and in probability.

The contraction principle of Section IV will be of fundamental importance
for all that follows; in its quantitative version, it essentially states that for a real
(respectively complex) Banach space E, the sequences of independent centered
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random variables in I/(E), 1 < p < +00, are unconditional basic sequences
with constant 2 (respectively 4).

In Section V, we generalize the scalar Khintchine inequalities to the
vectorial case (Kahane inequalities); the proof is much more difficult than for
the scalar case. These inequalities will turn out to be very important when we
define the type and the cotype of Banach spaces (Chapter 5). The proof of the
Kahane inequalities uses probabilistic arguments; in Subsection V.3, we will
see how the use of the Walsh functions allowed Latata and Oleskiewicz, thanks
to a hypercontractive property of certain operators (Proposition V.6), to obtain,
in the case “L' — L2,” the best constant for these inequalities (Theorem V.4).

Chapter 5 (Volume 1) introduces the fundamental notions of type and cotype
of Banach spaces.

It is now common practice to define these using Rademacher variables, but it
is often more interesting to use Gaussian variables, notably for their invariance
under rotation. We thus begin, in Section I, by providing some complements
of Probability; we first define Gaussian vectors, and show their invariance
under rotation (Proposition I1.8); we take advantage of this to present the
vectorial version of the central limit theorem, which we will use in Chapter 4
of Volume 2. We next prove the existence of p-stable variables, also to be used
in Chapter 4 of Volume 2, and present the classical theorems of Schonberg on
the kernels of positive type, and of Bochner, which characterizes the Fourier
transforms of measures.

As notions of type and cotype are local, i.e. only involving the structure
of finite dimensional subspaces, we give a few words in Section III to
ultraproducts and to spaces finitely representable within another; we prove
the local reflexivity theorem of Lindenstrauss and Rosenthal, stating, more or
less, that the finite-dimensional subspaces of the bidual are almost isometric to
subspaces of the space itself.

In Section IV, we define the type and cotype, give a few examples (type
and cotype of LP spaces, cotype 2 of the dual of a C*-algebra), a few
properties, and see how these notions behave with duality; this leads to the
notion of K-convexity. We also show that in spaces having a non-trivial type,
respectively cotype, we can, in the definition, replace the Rademacher variables
by Gaussian variables (Theorem IV.8).

In Section V, we prove Kwapien’s theorem, stating that a space is isomor-
phic to a Hilbert space if, and only if, it has at the same time type 2 and
cotype 2; for this we first study the operators that factorize through a Hilbert
space.

In Section VI, we present a few applications, and in particular show how to
obtain the classical theorems of Paley and Carleman (Theorem VI.2).
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In Chapter 6 (Volume 1), we will study a very important notion, that
of a p-summing operator, brought out by Pietsch in 1967, and which soon
afterward allowed Lindenstrauss and Petczynski to highlight the importance
of Grothendieck’s theorem, which, even though proven in the mid 1950s, had
not until then been properly understood.

We begin with an introduction showing that the 2-summing operators on a
Hilbert space are the Hilbert—Schmidt operators.

In Section II, after having given the definition and pointed out the ideal
property possessed by the space of p-summing operators, we prove the Pietsch
factorization theorem, stating that the p-summing operators 7: X — Y are
those that factorize by the canonical injection (or rather its restriction to a
subspace) of a space C(K) in [P(K, u), where K is a compact (Hausdorff)
space and p a regular probability measure on K in particular the 2-summing
operators factorize through a Hilbert space. It easily follows that the p-
summing operators are weakly compact and are Dunford—Pettis operators.
We next prove, thanks to Khintchine’s inequalities, a theorem of Pietsch and
Petczyniski stating that the Hilbert—-Schmidt operators on a Hilbert space are
not only 2-summing, but even |-summing.

In Section III, we show Grothendieck’s inequality (Theorem III.3), stating
that scalar matrix inequalities are preserved when we replace the scalars by
elements of a Hilbert space, losing at most a constant factor K¢, called the
Grothendieck constant. We then prove Grothendieck’s theorem: every operator
of a space L'(u) into a Hilbert space is 1-summing. The proof is “local,”
meaning that it involves only the finite-dimensional subspaces; in passing we
also show that the finite-dimensional subspaces of L” spaces can be embedded,
(1 + e)-isomorphically, within spaces of sequences Z,’:’ of finite dimension N.
We then give the dual form of this theorem: every operator of a space L>(v)
into a space L' () is 2-summing.

In Section IV, we present a number of results, originally proven in different
ways, that can easily be obtained using the properties of p-summing operators
(note that these do not depend on Grothendieck’s theorem, contrary to what
might be suggested by the order of the presentation): the Dvoretzky—Rogers
theorem (every infinite-dimensional space contains at least one sequence
unconditionally convergent but not absolutely convergent), John’s theorem
(the Banach-Mazur distance of every space of dimension n to the space £} is
< 4/n), and the Kade¢—Snobar theorem (in any Banach space, there exists, on
every subspace of dimension n, a projection of norm < /n). We then see that
Grothendieck’s theorem allows us to show that every normalized unconditional
basis of £; or of ¢ is equivalent to their canonical basis (this is also true for
£, but this case is easy).
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Finally, Section V is devoted to Sidon sets (see Definition V.1). The
fundamental example is that of Rademacher variables in the dual of the Cantor
group = {—1,+1}; another example is that of powers of 3 in Z. We prove
a certain number of properties, functional, arithmetical and combinatorial,
demonstrating the “smallness” of Sidon sets; we show in passing the classical
inequality of Bernstein. Grothendieck’s theorem allows us to show that a set
A is Sidon if and only if the space Cx is isomorphic to £;. We next present
a theorem that is very important for the study of Sidon sets, Rider’s theorem
(Theorem V.18), which involves, instead of the uniform norm of polynomials,
another norm [[ . |z, obtained by taking the expectation of random polynomi-
als constructed by multiplying the coefficients by independent Rademacher
variables. This allows us to obtain Drury’s theorem (Theorem V.20), stating
that the union of two Sidon sets is again a Sidon set, and the fact, due to
Pisier, that A is a Sidon set as soon as C, is of cotype 2; for this last result,
we need to replace, in the norm [[ . |, the Rademacher variables by Gaussian
variables, and are led to show a property of integrability of Gaussian vectors,
due to Fernique (Theorem V.26), a Gaussian version of the Khintchine-Kahane
inequalities, which will also be useful in Chapter 6 of Volume 2.

In Chapter 7 (Volume 1), we present a few properties of the spaces L. In
Section II, we study the space L'. After having defined the notion of uniform
integrability, we give a condition for a sequence of functions to be uniformly
integrable (the Vitali-Hahn—Saks theorem), which allows us to deduce that
the spaces L' (m) are weakly sequentially complete. We then characterize the
weakly compact subsets of L' as being the weakly closed and uniformly
integrable subsets (the Dunford—Pettis theorem). We conclude this section by
showing that L' is not a subspace of a space with an unconditional basis. We
will continue the study of L! in Chapter 4 of Volume 2; more specifically, we
will examine the structure of its reflexive subspaces.

In Section III, we will see that the trigonometric system forms a basis of
L7(0, 1) for p > 1. This is in fact an immediate consequence of the Marcel
Riesz theorem, stating that the Riesz projection, or the Hilbert transform, is
continuous on L” for p > 1; most of Section III is hence devoted to the
proof of this result. We have chosen not to prove it directly, but to reason by
interpolation, allowing us to show in passing the Marcinkiewicz theorem, at
the origin of real interpolation, as well as Kolmogorov’s theorem stating that
the Riesz projection is of weak type (1, 1) (Theorem III.6). We conclude this
section with a result of Orlicz (Corollary IIL1.9) stating that the unconditional
convergence of a series in L/, for | < p < 2, implies the convergence of the
sum of the squares of the norms, implying that the trigonometric system is
unconditional only for L2,



