B e e e — e — e D e e e

'BASIC

Dwyer

Critchfield

A Guide
to Structured
Programming

Shore Kaufman

"
Hidsessasens >

» RO 1
m RN “'"""" "’“”‘"v
2 IO g O witessiesyte
stentterieeriggh
Eisheerttastienisy o
ferpteagteaiqeaices ’ = " -
s
SENTIISATIIIAN NIRRT ST PhE DI cRMSaIN
. L I PP Te
Sadal i Y
L L L | PR Y]
e — wirearconrenn
v dasdestinne
FOICOIOIIED
PSRN,
_ " Hisiao, eI
e L
orst BT RRI St
bend ML
Ly
s R o Kvirsaripsace
steorriodHHpesns -
— Bersasrer e
. ¥
serveespersaed il Cienris
. IV Il mestantiaison
BIIERAROVIILININCNY e, - .
FIEESLTINIIINILNS MY EO0RG0 Y
T TSRS
. . PTG
BRI L N
SRR IS
CHANLETSIOVILISE v ORLOMI BT
) .. ey
FETER e eee (S Ny
BIISIVERIVEAFEARIIC -
S FIHOPHO IS
. = IS HTIITI BN Wity ARSI
PRSIV, 1954 2IVA2 d
WVAIIIVAIVITEY g o o IR LML O
ORI "
R SELEIENY IO SISISIIES N Ot Ay
" FERSERVELIVILIVARNS
FREFVRI i) AIINVAIIVRRISVANI Y
FONUIICHIIDS Prevr iR
e USROS IILINALES NPT
ARG shasdertertreiiey SINVESS PRV pRNY e
SIS PO MR
o PVALIVRAIENATINIINY FPAITIP TP
haacacad i idid TP IITTR IoE P oty ,
OBV YIS SIS AYBLONIBITOMILTNIAT ,
SO RN
SREP S
s sttt T S
e TN, ’ HHRBHRH R oo
PrOPIOTROROpoTeY T s GO
e . SAA) l'f‘l’“!l] — -
PRI ER IR ILNAY FARIEVARIVARIGY
[rae— mmmm sees RSSES At -
saevssasiaesabesar T
o v«u»:::mun\ boul tibbihiinand pesrrsECUSEIbRY
T puiaieioio BTyt o VrreRsIIeETAIEILISE
PR IERII O
ere bl
st " Issaavsasassarvenns OSSR
SRR 3
nstan CrbLerEierbesdiny T T
AVEINEERAD
[T TTOTPIO Oy CRSILOPUIION RRSECRISEELIFICOIN
PRI SEERBLRIBLNIILVIEY A et ibiaddingd 1 ¢ EURRRIR TR Y
SRttty
”mm“,mm)mbﬂ RTINS EHELNS LAV ILINIENG CESELOYSELTNSILISNR
» SRR e
IO
FELEFHILFIRIRONAINS
Nﬂ“ﬂm ww'\lﬂ arpeenrddin
- d SENRTEVILERALNEIIVS Rl LR s SREPETRLIIIENIIGNLIY
CORSECEPLRRIILINNE
s
sl VERFRSeRRENH a0y e
i VS2ENAOVRITIALVSIRY St RR R e
OO
sevsese SRRV : e A ¢
i SRSV EIN I g PSRRI RO
OO
eSS RS pREp S sseaves b it E i asvs sarens
o s LaRSILTINEY
FNIOIBILISINS e sssassserbedss
’ MO
selHEREIRT R SR e
¥ SELERIIEIIIIERY
HROMIOH ittt
WrRrT RS
et RS EeR et ese
SHHIHOOND e
SEideideidrid (X3 consteny .
OO L ke =
rrieasersge GOV
CUIOHII o -
s Ierbseicarbitesl
CIRITeen - ik
SRR ARSI UY RS RTINS RRESIIIES
—————on. SOOI RS o
SOUPEMINMID. -~ 1< v im st r s st s DU
B e d LR L R R)
[
PR ST Pre pues ELLLL R S e L =

BASIC
A Guide to

Structured Programming

Thomas A. Dwyer
Margot Critchfield

J. Michael Shore
University of Pittsburgh

Michael S. Kaufman

N A GIFT OF ‘ ‘q
r THE ASIA FOUNDATION “\
i LISTRIBUTED BY
SH‘»‘H::_J Al I\ FRNATIONA B
| 1INTE ATIONAL STUDIES
UN 24ty LIBERARY

¥S 404 LON

El 42 04 Fo A A o
Za,

5;. i 2) Pl U 3 Wy F =
L‘t GRS I LRI

s

Houghton Mifflin Company Boston

Dallas Geneva, lllinois Hopewell, New Jersey

Palo Alto

The photos in Figures 1.2 and 1.5 are courtesy of Radio Shack. All other photos,
and the color photo for the cover, are by Margot Critchfield. The program that
produced the cover art is described in Section 9.6 of this book.

Use of the AT&T logo is courtesy of AT&T Communications.

Use of the Commodore logo is by permission of Commodore Electronics,
Limited.

Use of the Heathkit logo is courtesy of Heath, Inc.

Use of the IBM logo on pages 7, 9, 10, 16, 49, 51, 58, 135, 136, 152, 168, 209, 210,
223, 224, 230, 231, 233, 259, 264, 269 is by courtesy of International Business
Machines Corporation.

Use of the Kaypro logo is courtesy of Kaypro Corporation.

Use of the Radio Shack logo is courtesy of Radio Shack, A Division of Tandy
Corporation.

Use of the Zenith logo is courtesy of Zenith Electronics Corporation.

Copyright © 1985 by Houghton Mifflin Company. All rights reserved.

No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, or by any information
storage or retrieval system, except as may be expressly permitted by the 1976 Copyright
Act or in writing by the Publisher. Requests for permission should be addressed to Per-

missions, Houghton Mifflin Company, One Beacon Street, Boston, Massachusetts
02108.

Printed in the U.S.A.
Library of Congress Catalog Card Number: 84-61356
ISBN: 0-395-35653-9

ABCDEFGHI-SM-B98765

Preface

In 1980, a friend of ours adopted a 5 pound ‘‘shepherd-mix’’ puppy from the
local animal shelter. He promptly named him BASIC, and then spent the months
ahead explaining to people that the pup’s name wasn’t all that strange, especially
when you knew that it was also the name of a computer programming language.

By 1984, two noticeable changes had taken place. BASIC weighed in at 90
pounds plus, and most people who were told his name smiled and said ‘‘Oh,
yes—just like the computer programming language.”’

The level of people’s awareness of the computer culture has increased even
more dramatically in recent years. In particular, the number of persons who are
familiar with the programming language BASIC now numbers in the millions,
and it’s growing at an astonishing rate. There may soon be as many people
acquainted with BASIC programming as there are with the three R’s.

The purpose of this book is to help students join this group, but in a rather
special way. Our goal is to guide beginning programmers in mastering the art and
science of professional BASIC programming, but without forsaking the infor-
mal aspect of BASIC that makes its use such a satisfying experience.

This goal presents some problems, of course. How does one reconcile the
precision demanded by professionalism with the informality of BASIC, an infor-
mality deliberately built into the language so that computer programming might
be accessible to beginners of all ages and backgrounds? This dilemma is akin to
that faced by the flight instructor who knows that fledgling pilots will never be-
come real professionals without discipline—and lots of it. But the same instruc-
tor knows that to try and communicate the hundreds of techniques that define
that discipline during the first few hours of instruction is an exercise in futility.
While learning to program may not be quite as traumatic an experience as learn-
ing to fly, the same kind of futility can easily be experienced by novice program-
mers who are given too many techniques too soon.

Our approach to resolving this dilemma has been to organize the content
and style of the book in two parts. Part I (Chapters 1 through 4) introduces the
fundamental features of BASIC in a relaxed, low-key manner. These opening
chapters also contain numerous short but useful examples, written for the most
part in minimal BASIC. While short examples do not permit meaningful
discussion of the modern concept of structured programming, they allow one to
quickly gain the experience that is vital to understanding the philosophy behind
this (and other) techniques of professional programming.

Part II of the book (Chapters 5 through 12) is called ‘‘Professional
BASIC.” In addition to introducing the many advanced features of extended

X Preface

BASIC, it emphasizes structured problem solving and structured program de-
sign. These ideas appear throughout the book, but formal discussions of the
techniques involved are reserved for the later chapters. By this time the student
will have had time to become comfortable with the many procedural details that
seem so complicated at first, but that soon become second nature. The tech-
niques of structured program design can then be introduced, not as isolated theo-
ry, but as powerful aids in the development of new programs that go beyond the
limits traditionally associated with first courses.

In particular, Part II illustrates the use of structured design methodology in
connection with programs related to statistical grade analysis and string
manipulation (Chapter 6); modern searching and sorting techniques (Chapters 7
and 8); simulations, games, and graphics (Chapter 9); menu-driven software,
data encryption, and word processing (Chapter 10); data processing and sequen-
tial file manipulation (Chapter 11); and random access files and database pro-
grams (Chapter 12). A series of colored headings is used in the margins of these
chapters to show the connection between the structured design of specific exam-
ples and the general principles of design discussed in the text.

The principal dialect of BASIC used throughout the book is Microsoft Disk
Extended BASIC, which is very similar to BASIC PLUS. Microsoft BASIC is
available on all the Radio Shack TRS-80 and most Commodore microcomput-
ers; the Apple II, Ile, IIc, and Macintosh; the IBM PC and PC Jr; and
microcomputer systems that use either the CP/M or MS-DOS operating systems
(for example, Tandy, Zenith, Heathkit, Monroe, DEC Rainbow, AT&T, Sanyo,
and Kaypro). BASIC PLUS is used on the time-sharing systems supplied by the
Digital Equipment Corporation (for example, the PDP-11 and VAX series) and
on the DEC 350 personal computer. When the text discusses features that apply
to a specific computer, the logo of that computer manufacturer (for instance,
IBM, Tandy, or Apple) appears in color in the margin.

To help support the general discussions in the text, and the more than 150
program examples used to illustrate these discussions, the book contains numer-
ous exercises and programming problems. Those designated as Exercises are
paper-and-pencil explorations. Those called Lab Exercises serve as guides to
doing work directly on a computer. In addition, each chapter ends with a com-
prehensive summary, followed by a collection of more demanding problems and
projects.

Most of the projects are connected with writing programs that have real ap-
plications. The principal piece of advice we would offer anyone is to do as many
of these projects as possible on either a home or school computer, allowing plen-
ty of time to experiment. Also talk to others, and share ideas. Then experiment
some more. You can’t hurt anything, but if you persevere with this stratagem,
you’re in for a treat. Not only will things get easier, but they’ll take on a fascina-
tion that will return your investment of time and energy many times over.

Acknowledgements

The authors wish to thank Sherrilyn Reiter, who typed much of the manuscript
and special technical material in the appendices. We are grateful to the many re-
viewers whose valuable suggestions helped shape the book’s content and peda-

Preface X1

gogical style. Particular thanks go to Martha Baxter of Mesa Community Col-
lege, Louis A. DeAcetis of Bronx Community College, John J. DiElsi of Mercy
College, Wesley Fasnacht of West Chester State College, June Fordham of
Prince George’s Community College, James Gips of Boston College, John B.
Lane of Edinboro State College, C. Gardner Mallonee II of Essex Community
College, Theodore V. Smith of Broward Community College, and Kenneth W.
Veatch of San Antonio College.
T.A.D.
M.C.
J.M.S.
M.S.K.

About the Authors

Thomas Dwyer is Professor of Computer Science at the University of Pittsburgh.
He is coauthor with Margot Critchfield of a dozen books on computing,
including CP/M and the Personal Computer, A Bit of IBM BASIC, A BIT of
Applesoft BASIC, and Structured Program Design with TRS-80 BASIC.

Margot Critchfield holds her Ph.D. from the University of Pittsburgh where she
teaches computer programming.

J. Michael Shore teaches computing at the University of Pittsburgh and Taylor
Allderdice High School.

Michael Kaufman is a graduate of the Harvard Law School and is presently
practicing law in New York.

Contents

Preface ix
Partl Informal BASIC 1

Chapter1 Getting Acquainted with a Computer 3

1.1 ThePlan for Part I 3
1.2 Types of Computers S

1.3 Using a Microcomputer: Procedures for the TRS-80, Apple,
and IBM Micros 7

1.4 Getting Ready to Communicate with a Time-Sharing Computer 10

1.5 The BASIC Language 12

1.6 Putting It All Together 14

1.7 You're On! 14

1.8 Example of a Perfect Session 16

1.9 Example of a Normal Session (the Kind with Typing Mistakes) 17
1.10 Summary of Chapter 1 18
1.11 Problems and Programming Projects 19

Chapter2 The Elements of BASIC Programming 21

2.1 The Basic Vocabulary of BASIC; Using Remarks 21

2.2 BASIC Statements Using the Key Words REM, PRINT, and END 23
2.3 Statements Using the Key Word LET 33

2.4 TheINPUT Statement 41

2.5 Storing Programs on Disk or Tape 49

2.6 Summary of Chapter 2 52

2.7 Problems and Programming Projects 55

Chapter3 Control Structuresin BASIC 57

3.1 What IsaControl Structure? 57
3.2 The GOTO Statement 58

Chapter4

Partll

Chapter5

Chapter6

\'/ | Contents

3.3 Statements Using IF ... THEN; STOP 63

3.4 Statements Using the Key Words FOR and NEXT; STEP 73
3.5 Other Control Statements; Structured Flow Charts 87

3.6 Summary of Chapter 3 90

3.7 Problems and Programming Projects 92

One- and Two-Dimensional Arrays; Using TAB and PRINT USING

4.1 BASIC Data Structures 95

4.2 Subscripted Variables; Using DIM 96

4.3 Two-Dimensional Arrays 105

4.4 Using TABin PRINT Statements 109

4.5 PRINT USING 113

4.6 Summary of Chapter 4 115

4.7 Problems and Programming Projects 116

Professional BASIC 119

BASIC Tools for Professional Programming; String Variables

5.1 The Plan for Part I1 121
5.2 READ and DATA Statements; RESTORE 122

5.3 Some ““Library’’ Functions in BASIC: SQR, INT, ABS, RND;
Mathematical Functions 129

5.4 Defining Your Own Functions with DEF FN 139
5.5 ON...GOTO...orGOTO...OF... 140
5.6 GOSUBand RETURN 142

5.7 ONKGOSUB... 145

5.8 Summary of Chapter 5 147

5.9 Problemsand Programming Projects 148

Extended BASIC and Its Application 151

6.1 The Dialects of BASIC; Extended BASIC; BASIC Data Types

6.2 Extended Data Types 152

6.3 Extended Control Structures; Boolean Expressions 154

6.4 Applying the Extended Features of BASIC 158

6.5 More About Strings in BASIC; String Arrays and String Functions
6.6 Applications Using Strings and String Arrays 164

6.7 The Extended INPUT Statement; Other Extensions; BASICA

6.8 Summary of Chapter 6 168

6.9 Problemsand Programming Projects 170

121

151

168

95

161

Contents vii

Chapter7 Secrets of Professional Programming 173

Chapter8

Chapter9

Chapter 10

7.1 Criteria for Professional Program Design; the Great GOTO
Controversy 173

7.2 Techniques for Structured Program Design 175
7.3 Debugging BASIC Programs 178

7.4 Programs = Algorithms + Data Structures:
Bubble Sort Revisited 181

7.5 Building Large Programs from Small Ones; Using MERGE
7.6 Summary of Chapter 7 188
7.7 Problems and Programming Projects 189

Professional Searching and Sorting Techniques 191

8.1 Searchingand Sorting: What’s the Problem? 191

8.2 The Shell Sort Algorithm 192

8.3 Sorting Strings 197

8.4 Binary Search 199

8.5 Sorting Records; Pointers and Indirect Addressing 202
8.6 Summary of Chapter 8 205

8.7 Problems and Programming Projects 206

BASIC Simulations, Games, and Graphics 209

9.1 Simulations versus Games; Electronic Spreadsheets 209
9.2 ASlot-Machine Simulation 211

9.3 Three Treasure-Hunt Games 217

9.4 Graphics in Business Computing; Scaling Data 226

9.5 Higher-Resolution Graphics 230

9.6 Graphsin Color that Use Mathematical Functions for
BothXandY 234

9.7 Summary of Chapter 9 236
9.8 Problems and Programming Projects 237

Writing Large BASIC Programs 239

10.1 Modular Program Design; Menu-Driven Programs 239
10.2 An Example Based on Data Encryption 240

10.3 Word Processing 246

10.4 Advanced Data Structures; Linked Lists 247

10.5 Writing a Line-Editor Program in BASIC 251

10.6 Summary of Chapter 10 255

10.7 Problems and Programming Projects 256

186

Chapter 11

Chapteri2

Appendix A
Appendix B
Appendix C
Appendix D

viii

Business Applications; Using Sequential Files In BASIC

Contents

11.1 Computers Mean Business: Formulas, Loans, and Mortgages
11.2 Computer Data Files 263

11.3 Using Sequential Files in BASIC 266

11.4 Adding Data to the End of a Sequential File 268

11.5 Summary of Chapter 11 269

11.6 Problemsand Programming Projects 271
Random-Access Files 273

12.1 Random (Direct) Access Files in BASIC 273

12.2 A Simple Example of Random Files 275

12.3 Applying Random-Access Files to Data Processing; PLEDGE
12.4 Extending PLEDGE to Include an EDIT Function 283
12.5 Summary of Chapter 12 284

12.6 Problemsand Programming Projects 285

THE ASCII Codes 289

Summary of Extended BASIC 291

Using Disk Files with Applesoft BASIC and BASIC PLUS

Answers to Selected Exercises 325

Index

369

257

317

257

278

PART

|

Informal BASIC

"-}a:i__

.-. l:_lll-. .

1<

CHAPTER ONE

Getting Acquainted
with a Computer

NEW TOPICS INTRODUCED IN CHAPTER 1

® Digital computers ® Personal computers

® Microcomputer systems ® /nput/output components

m Central processor/memory ® Mass-storage components
components m Time-sharing systems

® Floppy disks m Acoustic couplers

® Login procedures m BASICinterpreters and

® Modems compilers

® FEntering and running m Correcting errorsin
BASIC programs programs

1.1 ThePlanforPart!

A good starting place for any book on computing is to try to answer the question:
What can a computer do? There are thousands of answers to this question, but in
general they all boil down to this: A computer can do those things that can be
explained to it in terms of instruction sets called computer programs.

Generally speaking, there are two kinds of computer programs. First, there
are customized programs written by the person using the computer (or by a con-
sultant the user has hired) to do something special—something of unique interest
to that user. Second, there are ‘‘off-the-rack’’ or packaged programs of a more
general nature. These are of greatest value to users whose needs match the
capabilities built into the packages by their original designers.

Three examples of packaged programs will be shown later in this book. One
is an electronic spreadsheet program, shown in Chapter 9. The second is a word-
processing program, discussed in Chapter 10 (where you’ll also be shown how to
write your own simplified word-processing program). The third is a database-
management program, illustrated in Chapter 12.

4 Getting Acquainted with a Computer

The primary purpose of this book, however, is to show you how to write
your own customized programs, using a computer programming language called
BASIC. It’s something like showing a hi-fi enthusiast how to assemble a custom-
ized stereo system. Selecting and interfacing the components for such a system
takes professional know-how, and not everyone will want (or be able) to go this
route. But when you consider the level of insight, personalized control, and pride
of accomplishment associated with the customized approach, this option has a
lot more going for it than anyone might suspect.

The goal of Part I (the first four chapters of the book) is to help a beginner
get started programming in BASIC with a minimum of fuss. For that reason,
these chapters say very little about the theory of program design (that’s coming in
Part II). The idea is to get you acquainted with small, but real, programs that are
geared to taking the mystery out of programming as soon as possible.

The best strategy for making this plan work will be to mix “‘off-line’” prepa-
ration with ‘‘on-line’’ practice. The term on-/ine means working at the keyboard
of a computer (or a terminal connected to a computer), entering and executing
programs interactively, that is, in a manner that lets you immediately see the
results of your work on the computer’s display device.

To guide you in preparing for on-line work, the text is sprinkled with self-
study sections called Exercises. For example, Exercise 2.1 is the first exercise of
Chapter 2. It is based on material in the first part of Chapter 2, and it helps pre-
pare for the actual computing work that follows.

Directions for on-line experimentation are given in the form of Lab Exercis-
es. Each lab exercise is associated with a program that (like all the other programs
in the book) has been given a unique file name. For example, Lab Exercise 2.1
(file name ARITH) is the first lab exercise in Chapter 2, and it guides you in
working on-line with a program called ARITH. (The rules for inventing file
names will be explained in Section 2.5.)

There is also a collection of programming projects at the end of each chap-
ter. In general, these are best approached as a combination of off-line planning
and on-line experimentation, repeated in a cycle that emphasizes both aspects of
program design.

Off-line planning and documentation On-line testing and experimentation

1.2 Types of Computers 5

1.2 Types of Computers

The full name for the kind of computer we will study is ‘‘general-purpose digital
computer.”” From now on we’ll refer to such machines simply as computers,
which is what everybody does anyway. Although at one time there was consider-
able attention given to nondigital computers, called analog machines (including
slide rules), today just about all computing activity is done on digital machines.
(The reason why the word digital is used will be seen in Section 4.1.)

Digital computers come in many sizes and shapes, but there are two gen-
eral types you are most likely to encounter: microcomputers and time-sharing
computers.

\—‘_‘
Floppy disk

/
/
ﬁ
/
/
7
/
/
|
/
/

—_———
—_—
)

U,

—_—_——————

|

—_————

el

Hard disk

Printer
L . J L J L J
Input/output Central processor Mass storage

and memory

FIGURE 1.1 Example of a microcomputer system

6 Getting Acquainted with a Computer

Microcomputer Systems

Microcomputers (also known as personal computers) first appeared in the early
1970s. Today they are used by literally millions of people. A better term for micro
(or personal) computer is microcomputer system. It is called a system because it
consists of several parts, or components, that work together. As Figure 1.1
shows, there can be quite a number of these components, but they can all be
grouped into three categories: input/output components, central-processor/
memory components, and mass storage components.

The input/output (also called I/0) components allow the user to communi-
cate with the machine. For input, you usually use a keyboard to ‘‘talk’’ to the
computer, typing in the programs (sets of instructions) that tell the computer
what you want it to do. In this book, you will learn how to express such instruc-
tions as statements in a language called BASIC (Beginner’s All-purpose Symbolic
Instruction Code). BASIC instructions are stored in the computer’s memory,
along with any data (numbers or alphabetical symbols) that the program is to
work on. The central processing unit (CPU) of the machine then manipulates this
data* according to the program’s instructions. The results of this processing are
displayed on an output device—usually a video display or a printer.

Section 1.3 will show photographs of several microcomputer systems. They
can all be called microcomputer systems, since the central processing unit of each
uses a microprocessor chip. This is a thin slice of silicon on which thousands of
circuits are engraved, placing all the power of general-purpose computing within
low-cost desk-top units. You’ll also notice that the microcomputer systems
shown in these photos have floppy disks for mass storage. Floppy disks are circu-
lar pieces of magnetically coated plastic on which both programs and data can be
stored for future use. We will have more to say about disks in Section 2.5 and
Chapter 11.

Time-Sharing Computer Systems

The second type of computer that you may use is a machine large enough to re-
quire a room all to itself. The machine may be close at hand, or it may be miles
away. Such machines can be controlled by several users, each one working at a
separate terminal. (The word terminal refers to a combination of a keyboard in-
put device and a video or printer-like output device.) However, the terminals are
hardly ever in the same room as the computer. This is no problem, since two-way
communication with a computer can take place over long cables or telephone
lines. The setup looks something like that shown on page 7.

With such an arrangement, many people can be given the illusion that they
are simultaneously communicating with the central computer. The process that
makes this possible is called time sharing.

How does time sharing work? The computer carries out its operations at
such tremendous speed that it can give you enough computing time to keep you
busy in a fraction of a minute. The rest of that minute can go to the other users
(user means anyone working at an on-line terminal). The situation is something
like that of a stockbroker taking telephone orders from several customers at the
same time. If the stockbroker could switch back and forth from one telephone to

*Data is the plural of datum. However, through usage, the word data has become accepted
as being both singular and plural: this data and these data can both be used. This is one of
the many changes that computers have brought to the English language.

1.3 Usinga Microcomputer: Procedures for the TRS-80, Apple, and IBM Micros 7

Telephone connection Remote time-sharing computer Direct connection

another fast enough, each customer would think that he or she was getting the
stockbroker’s full attention. The computer /s that fast; you think it’s talking only
to you.

To make things clearer, let’s consider the two types of computer systems
separately. You need read only the section that deals with the type of computer
you have (Section 1.3 for microcomputers, Section 1.4 for time-sharing
computers).

1.3 Using a Microcomputer: Procedures for the TRS-80,
Apple, and IBM Micros

Radie fhaek
APPLE

Getting a microcomputer ready for BASIC programming is usually a simple pro-
cedure. It consists of two steps.

1. Turn on the power to all components in the system.
2. Load a special program called the BASIC interpreter.

Step 1 can be made even easier by having all the components plugged into a
switched multiple-outlet box (110-volt ac). Then, if you leave the power switches
for all the components in their ON position, you can turn the entire system on or
off with the switch on the outlet box. (Some manufacturers may advise against
this. If so, follow their recommendations.)

The exact procedure for step 2 depends on whether you are using a computer
system with floppy disks or not. If you are, then a BASIC system disk—a disk
that contains the BASIC interpreter—must be inserted into the computer’s pri-
mary disk drive. On some systems, if you insert the system disk and close the
drive door before turning the power on, step 2 will take place automatically after
step 1. If you don’t use disks, BASIC is usually stored in a part of the computer
called ROM (Read Only Memory). In this case, it’s not necessary to take any spe-
cial action in step 2. In all cases, be sure to read the manual for your specific sys-
tem before you do any of this.

