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Preface

In 1980, a friend of ours adopted a 5 pound ‘‘shepherd-mix’’ puppy from the
local animal shelter. He promptly named him BASIC, and then spent the months
ahead explaining to people that the pup’s name wasn’t all that strange, especially
when you knew that it was also the name of a computer programming language.

By 1984, two noticeable changes had taken place. BASIC weighed in at 90
pounds plus, and most people who were told his name smiled and said ‘‘Oh,
yes—just like the computer programming language.”’

The level of people’s awareness of the computer culture has increased even
more dramatically in recent years. In particular, the number of persons who are
familiar with the programming language BASIC now numbers in the millions,
and it’s growing at an astonishing rate. There may soon be as many people
acquainted with BASIC programming as there are with the three R’s.

The purpose of this book is to help students join this group, but in a rather
special way. Our goal is to guide beginning programmers in mastering the art and
science of professional BASIC programming, but without forsaking the infor-
mal aspect of BASIC that makes its use such a satisfying experience.

This goal presents some problems, of course. How does one reconcile the
precision demanded by professionalism with the informality of BASIC, an infor-
mality deliberately built into the language so that computer programming might
be accessible to beginners of all ages and backgrounds? This dilemma is akin to
that faced by the flight instructor who knows that fledgling pilots will never be-
come real professionals without discipline—and lots of it. But the same instruc-
tor knows that to try and communicate the hundreds of techniques that define
that discipline during the first few hours of instruction is an exercise in futility.
While learning to program may not be quite as traumatic an experience as learn-
ing to fly, the same kind of futility can easily be experienced by novice program-
mers who are given too many techniques too soon.

Our approach to resolving this dilemma has been to organize the content
and style of the book in two parts. Part I (Chapters 1 through 4) introduces the
fundamental features of BASIC in a relaxed, low-key manner. These opening
chapters also contain numerous short but useful examples, written for the most
part in minimal BASIC. While short examples do not permit meaningful
discussion of the modern concept of structured programming, they allow one to
quickly gain the experience that is vital to understanding the philosophy behind
this (and other) techniques of professional programming.

Part II of the book (Chapters 5 through 12) is called ‘‘Professional
BASIC.” In addition to introducing the many advanced features of extended



X Preface

BASIC, it emphasizes structured problem solving and structured program de-
sign. These ideas appear throughout the book, but formal discussions of the
techniques involved are reserved for the later chapters. By this time the student
will have had time to become comfortable with the many procedural details that
seem so complicated at first, but that soon become second nature. The tech-
niques of structured program design can then be introduced, not as isolated theo-
ry, but as powerful aids in the development of new programs that go beyond the
limits traditionally associated with first courses.

In particular, Part II illustrates the use of structured design methodology in
connection with programs related to statistical grade analysis and string
manipulation (Chapter 6); modern searching and sorting techniques (Chapters 7
and 8); simulations, games, and graphics (Chapter 9); menu-driven software,
data encryption, and word processing (Chapter 10); data processing and sequen-
tial file manipulation (Chapter 11); and random access files and database pro-
grams (Chapter 12). A series of colored headings is used in the margins of these
chapters to show the connection between the structured design of specific exam-
ples and the general principles of design discussed in the text.

The principal dialect of BASIC used throughout the book is Microsoft Disk
Extended BASIC, which is very similar to BASIC PLUS. Microsoft BASIC is
available on all the Radio Shack TRS-80 and most Commodore microcomput-
ers; the Apple II, Ile, IIc, and Macintosh; the IBM PC and PC Jr; and
microcomputer systems that use either the CP/M or MS-DOS operating systems
(for example, Tandy, Zenith, Heathkit, Monroe, DEC Rainbow, AT&T, Sanyo,
and Kaypro). BASIC PLUS is used on the time-sharing systems supplied by the
Digital Equipment Corporation (for example, the PDP-11 and VAX series) and
on the DEC 350 personal computer. When the text discusses features that apply
to a specific computer, the logo of that computer manufacturer (for instance,
IBM, Tandy, or Apple) appears in color in the margin.

To help support the general discussions in the text, and the more than 150
program examples used to illustrate these discussions, the book contains numer-
ous exercises and programming problems. Those designated as Exercises are
paper-and-pencil explorations. Those called Lab Exercises serve as guides to
doing work directly on a computer. In addition, each chapter ends with a com-
prehensive summary, followed by a collection of more demanding problems and
projects.

Most of the projects are connected with writing programs that have real ap-
plications. The principal piece of advice we would offer anyone is to do as many
of these projects as possible on either a home or school computer, allowing plen-
ty of time to experiment. Also talk to others, and share ideas. Then experiment
some more. You can’t hurt anything, but if you persevere with this stratagem,
you’re in for a treat. Not only will things get easier, but they’ll take on a fascina-
tion that will return your investment of time and energy many times over.
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CHAPTER ONE

Getting Acquainted
with a Computer

NEW TOPICS INTRODUCED IN CHAPTER 1

® Digital computers ® Personal computers

® Microcomputer systems ® /nput/output components

m Central processor/memory ® Mass-storage components
components m Time-sharing systems

® Floppy disks m Acoustic couplers

® Login procedures m BASICinterpreters and

® Modems compilers

® FEntering and running m Correcting errorsin
BASIC programs programs

1.1 ThePlanforPart!

A good starting place for any book on computing is to try to answer the question:
What can a computer do? There are thousands of answers to this question, but in
general they all boil down to this: A computer can do those things that can be
explained to it in terms of instruction sets called computer programs.

Generally speaking, there are two kinds of computer programs. First, there
are customized programs written by the person using the computer (or by a con-
sultant the user has hired) to do something special—something of unique interest
to that user. Second, there are ‘‘off-the-rack’’ or packaged programs of a more
general nature. These are of greatest value to users whose needs match the
capabilities built into the packages by their original designers.

Three examples of packaged programs will be shown later in this book. One
is an electronic spreadsheet program, shown in Chapter 9. The second is a word-
processing program, discussed in Chapter 10 (where you’ll also be shown how to
write your own simplified word-processing program). The third is a database-
management program, illustrated in Chapter 12.



4 Getting Acquainted with a Computer

The primary purpose of this book, however, is to show you how to write
your own customized programs, using a computer programming language called
BASIC. It’s something like showing a hi-fi enthusiast how to assemble a custom-
ized stereo system. Selecting and interfacing the components for such a system
takes professional know-how, and not everyone will want (or be able) to go this
route. But when you consider the level of insight, personalized control, and pride
of accomplishment associated with the customized approach, this option has a
lot more going for it than anyone might suspect.

The goal of Part I (the first four chapters of the book) is to help a beginner
get started programming in BASIC with a minimum of fuss. For that reason,
these chapters say very little about the theory of program design (that’s coming in
Part II). The idea is to get you acquainted with small, but real, programs that are
geared to taking the mystery out of programming as soon as possible.

The best strategy for making this plan work will be to mix “‘off-line’” prepa-
ration with ‘‘on-line’’ practice. The term on-/ine means working at the keyboard
of a computer (or a terminal connected to a computer), entering and executing
programs interactively, that is, in a manner that lets you immediately see the
results of your work on the computer’s display device.

To guide you in preparing for on-line work, the text is sprinkled with self-
study sections called Exercises. For example, Exercise 2.1 is the first exercise of
Chapter 2. It is based on material in the first part of Chapter 2, and it helps pre-
pare for the actual computing work that follows.

Directions for on-line experimentation are given in the form of Lab Exercis-
es. Each lab exercise is associated with a program that (like all the other programs
in the book) has been given a unique file name. For example, Lab Exercise 2.1
(file name ARITH) is the first lab exercise in Chapter 2, and it guides you in
working on-line with a program called ARITH. (The rules for inventing file
names will be explained in Section 2.5.)

There is also a collection of programming projects at the end of each chap-
ter. In general, these are best approached as a combination of off-line planning
and on-line experimentation, repeated in a cycle that emphasizes both aspects of
program design.

Off-line planning and documentation On-line testing and experimentation
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1.2 Types of Computers

The full name for the kind of computer we will study is ‘‘general-purpose digital
computer.”” From now on we’ll refer to such machines simply as computers,
which is what everybody does anyway. Although at one time there was consider-
able attention given to nondigital computers, called analog machines (including
slide rules), today just about all computing activity is done on digital machines.
(The reason why the word digital is used will be seen in Section 4.1.)

Digital computers come in many sizes and shapes, but there are two gen-
eral types you are most likely to encounter: microcomputers and time-sharing
computers.

\—‘_‘
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FIGURE 1.1 Example of a microcomputer system
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Microcomputer Systems

Microcomputers (also known as personal computers) first appeared in the early
1970s. Today they are used by literally millions of people. A better term for micro
(or personal) computer is microcomputer system. It is called a system because it
consists of several parts, or components, that work together. As Figure 1.1
shows, there can be quite a number of these components, but they can all be
grouped into three categories: input/output components, central-processor/
memory components, and mass storage components.

The input/output (also called I/0) components allow the user to communi-
cate with the machine. For input, you usually use a keyboard to ‘‘talk’’ to the
computer, typing in the programs (sets of instructions) that tell the computer
what you want it to do. In this book, you will learn how to express such instruc-
tions as statements in a language called BASIC (Beginner’s All-purpose Symbolic
Instruction Code). BASIC instructions are stored in the computer’s memory,
along with any data (numbers or alphabetical symbols) that the program is to
work on. The central processing unit (CPU) of the machine then manipulates this
data* according to the program’s instructions. The results of this processing are
displayed on an output device—usually a video display or a printer.

Section 1.3 will show photographs of several microcomputer systems. They
can all be called microcomputer systems, since the central processing unit of each
uses a microprocessor chip. This is a thin slice of silicon on which thousands of
circuits are engraved, placing all the power of general-purpose computing within
low-cost desk-top units. You’ll also notice that the microcomputer systems
shown in these photos have floppy disks for mass storage. Floppy disks are circu-
lar pieces of magnetically coated plastic on which both programs and data can be
stored for future use. We will have more to say about disks in Section 2.5 and
Chapter 11.

Time-Sharing Computer Systems

The second type of computer that you may use is a machine large enough to re-
quire a room all to itself. The machine may be close at hand, or it may be miles
away. Such machines can be controlled by several users, each one working at a
separate terminal. (The word terminal refers to a combination of a keyboard in-
put device and a video or printer-like output device.) However, the terminals are
hardly ever in the same room as the computer. This is no problem, since two-way
communication with a computer can take place over long cables or telephone
lines. The setup looks something like that shown on page 7.

With such an arrangement, many people can be given the illusion that they
are simultaneously communicating with the central computer. The process that
makes this possible is called time sharing.

How does time sharing work? The computer carries out its operations at
such tremendous speed that it can give you enough computing time to keep you
busy in a fraction of a minute. The rest of that minute can go to the other users
(user means anyone working at an on-line terminal). The situation is something
like that of a stockbroker taking telephone orders from several customers at the
same time. If the stockbroker could switch back and forth from one telephone to

*Data is the plural of datum. However, through usage, the word data has become accepted
as being both singular and plural: this data and these data can both be used. This is one of
the many changes that computers have brought to the English language.
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Telephone connection Remote time-sharing computer Direct connection

another fast enough, each customer would think that he or she was getting the
stockbroker’s full attention. The computer /s that fast; you think it’s talking only
to you.

To make things clearer, let’s consider the two types of computer systems
separately. You need read only the section that deals with the type of computer
you have (Section 1.3 for microcomputers, Section 1.4 for time-sharing
computers).

1.3 Using a Microcomputer: Procedures for the TRS-80,
Apple, and IBM Micros

Radie fhaek
APPLE

Getting a microcomputer ready for BASIC programming is usually a simple pro-
cedure. It consists of two steps.

1. Turn on the power to all components in the system.
2. Load a special program called the BASIC interpreter.

Step 1 can be made even easier by having all the components plugged into a
switched multiple-outlet box (110-volt ac). Then, if you leave the power switches
for all the components in their ON position, you can turn the entire system on or
off with the switch on the outlet box. (Some manufacturers may advise against
this. If so, follow their recommendations.)

The exact procedure for step 2 depends on whether you are using a computer
system with floppy disks or not. If you are, then a BASIC system disk—a disk
that contains the BASIC interpreter—must be inserted into the computer’s pri-
mary disk drive. On some systems, if you insert the system disk and close the
drive door before turning the power on, step 2 will take place automatically after
step 1. If you don’t use disks, BASIC is usually stored in a part of the computer
called ROM (Read Only Memory). In this case, it’s not necessary to take any spe-
cial action in step 2. In all cases, be sure to read the manual for your specific sys-
tem before you do any of this.



