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PREFACE

This book takes the reader as far as Vinogradoff’s theorem, that
every sufficiently large odd positive integer can be represented as
a sum of three primes. It assumes nothing of the theory of num-
bers that is not given in Hardy and Wright, An Iniroduction to
the Theory of Numbers (Oxford, 1938), hereafter quoted as H.-W.

My main purpose in writing this book was to enable those
mathematicians who are not specialists in the theory of numbers
to learn some of its non-elementary results and methods with-
out too great an effort. - |

Chapter 1 deals with a refinement of the prime number -
theorem, obtained by de la Vallée Poussin in 1899 (Mém. cour.
Acad. R. Belg. 59, 1), three years after the discovery by him
and Hadamard of the prime number theorem itself. The
method of proof used here is essentially due to Landau.

The main result of Chapter 2, Theorem 55, with its emphasis
on uniformity in %, was stated and proved in 1936 by Walfisz
(Math. Z. 40, 598, Hilfssatz 3), but the difficulty in obtaining
it had then been removed by Siegel (dcta Arith. 1 (1935),
83-#), who had discovered a property of Dirichiet’s L func-
tions which led at once to Theorem 48. The method used in
§§ 2:5-2-6 is taken from the theory of groups. This theory is
not assumed, but the reader who finds §§2-5-2-7 difficult may
be referred to an alternative proof of Theorem 28: La.ndau,
Vorlesungen iber Zahlentheorie (Leipzig, 1927), 1, Satz 134.

The method of Chapter 3, excluding Theorem 58, is due to
Hardy and Littlewood (Acie Math., Siockh., 44 (1923), 1-70).
Vinogradoff, in obtaining his fa,mous result- (Rec. Math, T. 2
(44), 2 (1987), 179-95), built on foundations laid by them. At
the same time Theorem 56, which is due to him, is a very
substantial contribution. :

I am indebted to my colleague Mr. H. Kestelman for valuable
advice and criticism, and to Mr. R. C. Wellard for checking part
of the manuseript and correcting a mistake.

Landon, August 1951 T. ESTERMANN



REMARKS ON NOTATION

"Throughout this book, the following letters denote the follow-
ing types of number:

h, 3,1, m, n = integers;

k, q = pusitive integers;

p = primes;

¢, u, v, ¥, Y, 0,.0 = real numbers;
M, €, § = positive numbers;

'8, w, z = complex numbers.

The reel and imaginary parts of 3 are, as usual, denoted by

o and ¢ respectively.
Cy, Cy, ... are suitable (sufficiently large) positive absolute

constants.

("

denctes an integral taken along the straight line from
2 - .
z to w.

{#] denotes the greatest integer less than or equal to z.

¢(z) is an abbreviation for 27,
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INTRODUCTION TO
MODERN PRIME NUMBER THEORY

CHAPTER 1

THE RIEMANN ZETA FUNCTION AND
A REFINEMENT OF THE PRIME
NUMBER THEOREM

1-1. The prime number theorem states that =(m), the number
of primes not exceeding m, is asymptotic to mflogm. Our
object is to obtain a better approximation to #(m), and we
shall show that :

mm) = 3, o+ Ofme—evioem) (1)

logn

where c is a suitable pomtxve const.ant. This is a refinement of

the prime number theorem, for it is easily seen that
. 8 |

‘g logn - logm’

The numerical value of ¢.is unimportant. In fact, (1) is true '
for any positive constant ¢, and this can be shown by a slight
modification of the method used here. Still better results in

 this direction can be proved by more complicated methods.

The proof of (1) is mostly analytical. Only the last step is
elementary, and consists of a straightforward argument which
deduces (1) from the formula :

() = m + O(me—ov 1oam), S i

* where fi(m) = % A(n), (3)
n=1

A(p*) = log p, and A(n) =0 if  is not of the form p*. The
analytical part of the proof depends on certain properties of
2 1
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2 MODERN PRIME NUMBER THEORY

the Riemann zeta function, originally defined by
{(8) = Ln* (o>1) (4)

n=1

We shall extend this definition by analytic continuation up to

the imaginary axis. The further analytic continuation of the

zeta function into the left-hand half-plane, though well known,
will not be given in this book, as it is not needed for our pur-
pose. The deepest property of the zeta function used here
is that =

U)#0 fo>1-1/(Cilog|t]), [t|>C} <« {5)

<12, The details are as follows. In order to obtain the ana-
lytic continuation of {(s), we cqnsider the functions

n+1 .
Ju(8) = n"s—f wtdu n=12:.2) (8)
1t i obvious that™* [fe) = 3 f.(8) 4~ )
n=} AT K l

n+1
Hos 1 Al Flere f (n~*—u~5)du
n

and
u n+i
[Rt—-u?| = f sv‘““‘dv‘lé |8 ]f vo-ldy (nsusn+l),
7 n :
B n+i %
s0 that | fa(8)| <18 1J’ v%1dv, (8)
: n

We use the term ‘locally uniformly at sy’ for ‘uniformly in some
circle about &, and the term ‘locally uniformly in S’ (where S
is a set of points) for ‘}ocall_y uniformly at all points of §’. It

follows from (8) that f,L(s) converges locally uniformly in the

half-plane o> 0. Hefwe we may de_ﬁne {{s) for G<o<l, 81,

by (7), thus obtaining the desired analytic continuation and
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THE PRIME NUMBER THEOREM . 3

TrEOREM 1. {(s) 18 reqgular for o> 0, except at s = 1, where
it has a simple pole with residue 1.
We also deduce from (7) and (8) that
i b o i -
!C(s‘)—-——l——lstsif v“’*’ul'z).:'_";_I (6>, a1). (9)
| §—1] 1 c .
The next theorem, which belongs to the elementary theory
of numbers, will be used here repeatedly.

TuroreMm 2. If f(n) is multzphcatwe and 2 |f{n)| converges,

then I weed
§1f(n) =11 ?)..:«nf(P"')-

This foliows from H.-W., Theorem 286, on putting s = ¢ and
noting that f(1) = 1 for any multiplicative function f(n) which
does not vanish identically. Conversely, Theorems 2 implies
H.-W., Theorem 286, since n~* is a multiplicative function of n.

THEOREM 3. Lel a>1. Then )
£(s) = (1 —p2)t.
. »
This follows from (4) and Theorem 2. We dcduee that
: 8)+0 (o>1). (10)
TragoreM 4. Let o> 1. Then

) _ _logp
) Fp-T

This follows from Theorem 3 since the series converges
locally uniformly in the half-plane o> 1. We dedunce that

-2
?

e _ 2 - '
T = ~1§1A(n)n (e>1) ay

(cf. H.-W., Theorem 294, where s is, however, restricted to
real values).
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1:3. The next theorem, whlch is almost trivial, w:]l help us
to establish two further propertles of the zeta function needed
in our proof of (5).

TrgoseM 5. Lef [z] = 1. Then R(8+42+2%)>0.
Proof. Putting z = é:+iy, we have 2%+4+y® =1 and hence
R(3+4z+2%) = 344z +28—y? = 2+ 4+ 20 = 2(1 +2)*>0.

The two properties referred to are as follows:

THEOBEM 6. Letu>1. Then

rls ) C(u+iv) (e 2iv) :
R‘3 {(u ) C(u+w)_‘+ {('u.j- 2ev) %0 =1 (12)
and | £3(w) {4 +1v) {(u+ 2iv) | 2 1. (13)

Proof. By (11),

O'(w) . C'(u+i@)) C(’u+2ﬂ)) e % A(n)n—a,

3wt i) Tl Zm) i

where a, = 3+4n—®+n~%", so that, by Theorom 5, Ra,, > 9.
This proves (12). Also, by Theorem 3,

~ms

{(s) = exp N log(1—p~) 1 =exp ):- o
? » m=1 T

A('n e
- =i ngglOg »n ; (0’>1)’
go that
| E(a) Lhu + i) L(u+ 2iv) | = expz A\ ") Ra,

with a, defined as before. Since Ra, > 0, this proves (13).

1-4. The next four theorems belong to the theory of func-
tions. The third will be the main analytical teol in the proof
of (6). The fourth will only be used in the next chapter.
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TaegoreEM 7. Let r>1, '
f() = élb,,zj- (|z]<r), and RfE)<M (|z]=1).
Then : |by|<2M (n=1,2,..).
Proof. Putting b, = |b,| e, we have
| Rf(e) = 3,15, 1008 6,1,
and this series converges uniformly, so that
J':'Rf(ew) 8 =0
Lok ifoz"Rf(e‘”)cos(G“-{-nG)da =aib,] (=12,
which implies that : -
w5 b fo "R{(¢) {1+ cos (0, +n6)} b
< f " M{1 + 008 (0, +n0)}d6 = 2n M,
and the result follows. :

TrrorEM 8. Let r>1, let g(z) be regular for |z|<r, and
let g(z)+0 (lz|<r) and |g(2)/g(0)|<e™ (|z|=1). Then
19'(0)/g(0) | < 2M.

This follows from Theorem 7 with

fiz) = J A )dw and b, = f™(0)/n!,
which 1mphes that g'(0)/g(0) =

TarorEM 9. Let [(z) be regular, and | f(z)/f(O) [ e¥, for
l2]<2;let 0<a<l,
f@)%0 (]z]<1, Re>0),- (1)
and let f(z) have a zero of order h at z = —a. Then
~R{f (0)/f(0)} < 2M ~Ha.
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Proof. Let the zeros of f(z) within and on the circle |z| = 1
be z 24, Zgy - % Of Orders ky, ks, ..., Ky respectively, and put

9(2) = f(2) H (RmZa) o
me=1
Then g(z) is regular for |z| < 2, and there is a number 7 > 1 such
that g(z)+0 (|z|<r). Also
le@| _ 171G ( |2 ) e
oo = 7o) LA S S (et =2)
and hence, by the maximum modulus theorem,

9())g0) | <eM  (|z] = 1).

From this and Theorem 8 it follows that

R (0)/g(0)} < |'(0)/g(0) | < 211,

§ g g
which means that — {f (9) + X } <2M,

7 (0) =1 Zm |
se thint » —RJ}((&) <2M+m§11,nn

NOW, by (14), all the terms k,R(1/z,) are negative or 0, and
— hfa is one of them. Hence the result.

Turorem 10. Let f(z) be regular, and |f(z)/f(0)| < e, for
12| 2; let la|<], [BI<], a%b, fla)=[(b) =0, and let (14)
hold. Then —R{f'(0)/f(0)}<2M +R(1/a)+R(1/b).

This can be proved in the same Wa.y as Theorem 9.

1-5. We are now in a position to prove a theorem which
implies (5). For convenience, we put 2

_ t* = max(|¢}, 100) (15)
and 2(s) = (s—1)Ls) fs+1), n(l) =1 (16)
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THEOREM i1. {(8) has no zeros in the sel of poinis D given by
o> 1—1/{4000log t*). -

Prog. Suppose’ that the theorem is false. Then there are
numbers o, and to such that

L(ao-th) =0 : (17,
and 0> 1—1/(4000 log t§), (18)
where <~ t* = max ({{,], 100). 0

It follows from (10) and (17) that
o<1, (20)

and from this and (9), (17), and (18) that |f,|>2. Hence, if
l<u<? and |s—u—tty|<} then |s—1|2ji|=|fi-121,
|2] <3+ and o> §, so that, by (9) and (19),

: ,C(s)!<6+i sit* (‘1§<u<2,is-—u—-itols:k). y (21)
Similarly | {(8)|<3iF (I<u<2, |s—u—2ilg|<) (22)

Also, if 1<% and |s—u|<}, then

023_02 ofoe !_iz_l*__l |8 — ui”}
1e2” 181 \ls] =] u? 16

(128 is the square of the cosine of half the angle subtended at
the origin by the circle |s~1| = }), so that

|5 |Jo <A/(16/15) < 31/30. *
Hence, by (16) and (9),
ne)| <1 +3hla=1(<t (L<u<dhis-ulsd. (28)
Nowlet . ‘u=l+l/('80010gt;‘) (24)

and  f(z) = p¥(w+12) (8(u +ity+32) Llu+ 20t + 32).. . (25)
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Then, by (23), (21), (22), and (19),
IfRI<@®*ER)3 <g® (12]< 2) (26)

Also, putting

(1) = L3(u+10) [Hu -+ ity +w) ;(u+ tg+w),  (27)
we have, by (25) and (16), :

: f(z) = (u—1+12Pglda),

which implies that  f(0) = (u—1)2¢(0) = (28)

O 3 1g(0)
70) " 8@=1) "8 4(0)’ (29)

Now, by (27) and Theorem 6, |g(0)]> 1 and R{g’ (0)/9(0)}<0
Hence, by (24) (28), and (29),

|£(0) | > (8001ogty)—* - (30)
and = -  R{f'(0)[f(0)} < 300log t3. SNy

and

- Also zflog z increases with x when x>e. Hence

t¥/logt¥ > 100/log 100> 20,
and hence, by (30), | f(0) | > (40t*)—3>t*—° From this and (26)
it follows that

If@)If0) [ < g1 (12]<2). (32)

Now, by (17) and (25), f(z) has a zero at z = 8(dp—u), and,
denoting the.order of this zero by &, we have

h>4.- (33)

Putting M = 12logt} and a = 8(w—o,), we can now verify
that all the hypotheses of Theorem 9 are satisfied. In fact,
" f(z) is regular for |z|<2 by (25), (16), and Theorem 1, since
u>1 and |t,| = 3; |f(2)f(0)| <eM(|z]<2) by (32); 0<a<1 by
(24), (20), (18), and (19); (14) follows from (25), (16), and (10)



THE PRIME NUMBER THEOREM 9

since % >1, and we he_i,ve just seen that f(z) has a zero of order
h at z = —a. Hence, by Theorem 9, (31), and (33),

4 : i
<2M —- * .
0. M g 3Q010g i = 324log i} Su—og)
From this and (24) and (18) it follows that
1 j 2 1000

324>

S(u—og)log e 2(8001+4000°1) 3
This is a contradiction; so Theorem 11 is proved.

THEOREM 12. 7/(s)/x(s) is regu’lar‘in the set of poinis D of

- Theorem 11.

This follows from (16) and Theorems 1 and ; & By

16. We shall deduce that 7'(s)/5(s) = O(log®t*) in a suitable
subset of D. First, however, we have to prove another theorem
from the theory of functions.

THEOBEM 13. Let 0<r,<7,, lei g(z) be regular for |z| <7,
and let g(0) = 0 and Rg(z)< M (|2{=r1,). Then

10'(2) | < 2Mryfry— 212 (2] <)

Proof. Let f(z) = g(ryz) and r = r,y/r;, Then there are num-
bers by, by, ... such that all the hypotheses of Theorem 7 are
satisfied. Hence, if | 2] <#,, we have

1 oo z|\n1-
LT I(I l)

o el I e

n=1 b ¥,

19'(2)| =

o f~1 : :
<2_lg2n(|2|) = 2Mry(r,—|2{)%
1 2=1 \ " S

_ which proves the theorem.



10 MODERN PRIME NUMBER THEORY -
TurOREM 14. Let 1—1/(10000logt*)<o<2. Then
= I n'(8)/n(s) | < Cslogdt*.
Proof. Letr, = 14 1/(50001ogt*), 7, = 1+ 1/(450010g t*), and
e+ilte ;
‘ 7w >
z) = dw. 34
o fzw () ' Sl

Then it is easily seen that any point w for which | w— (2 +it) | <7y
_ is & point of D {the set of points defined in Theorem 11). From
this and Theorem 12 and (34) it follows that g(z) is regular for
|z| <7y Also, by (34), e = y(2+it +2)/n(2+it). Now, by
{16), (9), and (15),

2
[n(2+it+2)| <1+ (3;—*1%)«
13

<2t*2 (IZlSTl),

and, by (16) aﬁd Theorem 3,
| (2+aty|7 < | Y2 +at) |
; : II (I+p < II (1-p*) 1= {(2)<2.
Hence eRot®) < 4% < t*3 {a]= rl), and the hypotheses of
Theorem 13 are satisfied with M = 3log#*. It follows that
|n'(@)m(s) | =]g'(s—2—it) | =|g'(c —2) |
< 2Mr,(ry— 2+ 0) "2 < 2M7r, (10000 log t*)? < 10° log *t*,

which proves the theorem.

1-7. Our next task is to prove (2). The connexion between
{(8) and (m) may be expressed in the formula s

) = L[ TEE AP LG, s )

'We shall neither \prove nor use this formula. Instead. we
-consider the integral

[,

a—~tb 8 C(ﬂ)
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whlch for suitable values of @ and b, provides a good enough
approximation to —2miys(m). Then we replace (’(s)/{(s) by
—1/(8— 1) +7'(s)/n(s), using (16), and deduce from Theorem 12
and Cauchy’s theorem that

J‘ a+id (m+ 3 0'(s8) J‘ (m+ 3106,
a—ib $ 7’(8) ! TI(")
where ' is a suitable broken line. Finally we obtain-an in-
equality for the last integral from Theorem 14. These are the
main steps in the proof of (2). .
For convenience, we put
: 1 (@>1), Coal e
Bla) = { (el (35)
0 (0<z<tl).

Then, by (3),
d(m) = ),E(’“‘%) A)  (m=1,2,..). (36)

~ TeeoreM 15. Let a>0, b>0, x>0, and .c:i:l Then

22

Uﬂ* ff.‘ds_zmﬁf(x)lﬂllog"c!

~--1ib

Proof. Suppose, first, that 2 > 1. Then it easily follows from
the theorem of residues that

; atib o8 ]
" J,+f -é-ds+J2=2m,
= ;

b
a—1ib —co+ib e
where 4 =f : -aigds, Jp= ( L ds.
—w—ih Jaris 8
1 e 20— ‘ - ffa o at
v I'JIE-“‘ _Q&uibd”lgf_m_?;d “blogx

Similarly, |/, | < z%/(blogz), and the result follows in this case.



