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xxii Preface

3. Development of meshfree formulations known as reproducing kernel particle methods. These methods
provide exceptional accuracy for the simulation of solids undergoing extremely large deformation
and have been implemented in many commercial and laboratory software systems:

(i) shell elements in DYNA3D, ABAQUS, LS-DYNA, ANSYS, and Argonne National Laboratory

(ANL) software;

(ii) explicit-implicit methods in US Ballistic Laboratory EPIC-2/EPIC-3 programs, and ANL soft-
ware;

(iii) Lagrangian—Eulerian methods adopted by ANL, Kawasaki, Mitsubishi, Ford Motors, and Grum-
man;

(iv) various meshfree methods implemented by Sandia National Labs, Lawrence Livermore National
Lab, General Motors, Ford Motors, Delphi, Ball Aerospace, and Caterpillar;

(v) multiscale methods adopted by Goodyear for the design of tires and by Sandia in their TAHOE
code for multiscale analysis.

Professor Wing Kam Liu is the recipient of numerous awards and honors that include: the 2012
Gauss—Newton Medal (IACM Congress Medal), the highest award given by IACM; the 2009 ASME
Dedicated Service Award; the 2007 ASME Robert Henry Thurston Lecture Award; the 2007 USACM
John von Neumann Medal, the highest honor given by USACM; the 2004 Japan Society of Mechanical
Engineers (JSME) Computational Mechanics Award; the 2002 IACM Computational Mechanics Award;
the 2001 USACM Computational Structural Mechanics Award; the 1995 ASME Gustus L. Larson
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the 1983 Ralph R. Teetor Educational Award, American Society of Automotive Engineers. In 2001, he
is listed by ISI as one of the most highly cited and influential researchers in engineering.

This large number of accolades highlights Wing Liu as a scholar and educator of extraordinary
international reputation. This is also underlined by the fact that the present book comprises contributions
from North American, Europe, and Asia, and from a very diverse group of people: colleagues, friends,
collaborators, and former and current PhD students and post-docs. A wide range of topics is covered
in this book: multiscale methods, atomistic simulations, micromechanics, and biomechanics/biophysics.
These contributions represent either Wing Kam Liu’s own research activities or topics he has taken an
interest in over recent years. Moreover, the dedications of the contributing authors show that Wing Liu
has represented more than just a scientist to a great number of people, to whom he also serves as friend,
supporter, and source of inspiration. We are glad to have the opportunity of editing this book and would
like to thank Wiley for its helpful collaboration, the authors for their contributions and making this book
a success, and Wing Liu for his inspiring and initiating novel research in computational mechanics.

On behalf of the authors, we congratulate Wing Kam Liu to his 60th birthday and wish him happiness,
health, success, and continued intellectual creativity for the years to come.

Shaofan Li and Dong Qian
Houston, Texas
November 2012



Preface

This book is dedicated to Professor Wing Kam
Liu (or Wing Liu for those who know him well)
on the occasion of his 60th birthday.

In 1976, Professor Wing Kam Liu received
a BS degree in Engineering Science from the
University of Illinois at Chicago with honors.
It was his time at UIC where Wing Liu met
Ted Belytschko, then a young assistant pro-
fessor, and took his graduate course on finite-
element methods. After graduation from UIC,
Wing Liu was admitted as a graduate assis-
tant at the California Institute of Technology
(Caltech) under the supervision of the young
Thomas J.R. Hughes, who was beginning his
academic career there. During his Caltech years,
Wing Liu worked on a number of research
topics, including finite-element shell elements,
which is known today as the Hughes—Liu ele-
ment.

Wing Liu received both his MS degree (1977)
and PhD degree (1980) in Civil Engineering
from Caltech, and he then came back to Chicago
to become an assistant professor at Northwest-
ern University, joining Ted Belytschko and kicking off a 30-year collaboration between them. In his
32-year academic career, Professor Liu has made numerous contributions to computational mechanics
and micromechanics. Among his most noteworthy contributions are:

. Development of multiscale methods that bridge quantum to continuum mechanics. Using these meth-
ods, he has developed software for the analysis and design of nanoparticles in materials, bio-sensing,
and drug delivery.

2. Development of new finite-element techniques. These include introducing new shell elements, arbitrary
Eulerian—Lagrangian methods, and explicit-implicit integration techniques that have significantly
enhanced the accuracy and speed in software for crashworthiness and prototype simulations. Wing
Liu was also the first to develop nonlinear probabilistic finite-element techniques that made nonlinear
stochastic and reliability analyses possible.
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