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Preface

This book is a collection of research articles related to the mathematical analysis of
multifunctions. By a set valued map F : X — 2! we simply mean a map that assigns to
each r € X a subset F(r) C Y. The theory of set valued maps is a beautiful mixture of
analysis, topology and geometry. Over the last thirty years or so there has been a huge
interest in this area of research. This is partly due to the rich and plentiful supply of
applications in such diverse fields as for example Biology, Control theory and Optim-
ization, Economics, Game theory and Physics. This book titled ‘set valued mappings with
applications in nonlinear analysis’ contains 29 research articles from leading mathem-
aticians in this area from around the world. Topological methods in the study of nonlinear
phenomena is the central theme. As a result the chapters were selected accordingly and
no attempt was made to cover every area in this vast field. The topics covered in this book
can be grouped in the following major areas: integral inclusions, ordinary and partial
differential inclusions, fixed point theorems, boundary value problems, variational
inequalities. game theory, optimal control, abstract economics, and nonlinear spectra.

In particular the theory of set valued maps is used in the chapters of Agarwal, Meehan
and O’Regan, Andres, Candito, Kamenski and Nistri, Kryszewski, Matzakos and Papa-
georgiou, and Palmucci and Papalini to present results for differential and integral
inclusions in various settings. The Baire category method is used by De Blasi and
Pianigiani to discuss existence problems for partial differential inclusions. Structure of
solution sets is addressed by Agarwal and O’Regan, and Obukhovskii and Zecca. The
chapter of Matzakos, Papageorgion and Yannakakis contains results on optimal control
for nonlinear parabolic partial differential equations. Many new fixed point theorems for
set valued maps are contained in the contributions of Agarwal and O’Regan, Daffer and
Kaneko, Frigon, Morales, Ricceri, and Takahashi. Nonlinear spectral theory is discussed
by Appell. Conti and Santucci, random fixed point theory by Shahzad, and fuzzy map-
pings by Cho, Shim, Huang and Kang. In a long survey chapter Milojevi¢ presents new
results in the theory of A-proper maps. Variational inequalities are discussed in the long
survey article of Chowdhury and Tarafdar, and in the chapters of Isac, Tarafdar and
Yuan, and Park. Maximal element principles are presented in the contributions of Ding,
and Isac and Yuan. Applications of fixed point theory in abstract economies and game
theory appear in the chapter of Tan and Wu. Some interesting fixed point algorithms are
contained in the chapters of Reich and Zaslavski, and Verma.

We wish to express our appreciation to all the contributors. Without their cooperation
this book would not have been possible.

Ravi P Agarwal
Donal O’Regan
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1. Positive LP and Continuous Solutions for
Fredholm Integral Inclusions

Ravi P. Agarwall, Maria Meehan? and Donal O’Regan3

' Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent,
Singapore 119260

*School of Mathematical Sciences, Dublin City University, Glasnevin,

Dublin 9, Ireland

*Department of Mathematics, National University of Ireland, Galway, [reland

Abstract: In this chapter a multivalued version of Krasnoselski’s fixed point theorem in a cone is
used to discuss the existence of C[0,T] and LP[0, T} solutions to the nonlinear integral inclusion
yt) € fOT k(t, s) f(s,y(s)) ds. Throughout we will assume k: [0,7] x [0,T] — R and f: [0, T]x
R — 2R

1. INTRODUCTION

In this chapter we present new results which guarantee that the Fredholm integral
inclusion

T
ut) € /0 K(t, 5) (s, y(s))ds (L1)

has a positive solution y & LP[0,T], 1 <p < oo, or has a nonnegative solution
y € C[0,T). Throughout this chapter T'> 0 is fixed, k: [0,T]x [0,7] — R and
fr10,T1 x R — 2R; here 2R denotes the family of nonempty subsets of R. It is
only recently [6] that a general theory has been developed which guarantees that the
operator equation, y(t) = fOT k(t, 8)g(s, y(s)) ds for ae. t € {0, T}, has a positive solution
y € LP[0,T] (note by a positive solution we mean y(t) > 0 for a.e. t € [0,T)); here
g: [0,T] x R — R is single valued. In Section 2 using the 1991 paper of Cellina et al.
[3] we are able to establish criteria which guarantees that (1.1) has a positive solution
y € LP[0,T]. Section 3 discusses C[0,T) solutions to (1.1); the results here improve
those in {1].

The main idea in this chapter relies on the multivalued analogue [1] of Krasnoselski’s
fixed point theorem in a cone. Let E = (E, || - ||) be a Banach space and C C E. For
p >0 let

Qy={zcE:|zf<p} and 9, ={zcE: lzll = p}.

1




2 R.P. Agarwal et al.

Theorem 1.1: Let E = -|) be a Banach space, C C E a cone and let || - || be
increasing with respect to C. Also r, R are constants with 0 <r < R. Suppose
A: QrNC — K(C) (here K(C) denotes the family of nonempty, convex, compact
subsets of C) is an upper semicontinuous, compact map and assume one of the following
conditions

A |yl < llz|| for all y € A(z) and x € I N C and ||y|| > ||z|| for all y € A(x) and

red.NC

or

(B) |yl > ||z|| for all y € A(x) and x € IQr N C and ||y|| < ||z|| for all y € A(z) and
redNC

hold. Then A has a fixed point in C N (Qg\SY,).

2. 17[0,T] SOLUTIONS

In this section we discuss the nonlinear Fredholm integral inclusion

T
y(t) € /0 k(t,s)f(s,y(s))ds ae.t€0,T), (2.1

where k: [0,7] x [0,T] - R and f: [0,T] x R — K(R). We would like to know what
conditions one requires on k and f in order that the inclusion (2.1) has a positive solution
y € LP[0,T], where 1 < p < oo. Here by a positive solution y we mean y(t) > 0 for a.e.
t € [0,T]. Throughout this section || - ||, denotes the usual norm on L for 1 < g < oo.

Theorem 2.1: Let k: [0,T] x [0,T] - R and f: {0,T] x R — K(R) and suppose the
Jollowing conditions hold:

the map w— f(t,u) is upper semicontinuous for a.e. t € [0, T7; (2.2)

the graph of f belongs to the o-field L @ B(R x R)
(here L denotes the Lebesgue o-field on [0,T] and B(R x R) (2.3)
= B(R) ® B(R\) is the Borel o-field in R x R);

Ips,1 < pp < 00,0y € L7[0,T) and ay > 0 a gonstant, with

(L) = sup{|z: 2 € (1)} < ar(t) + aslyl (2.4)
forae t€[0,T) and all y € R;

(t,s) — k(t, s) is measurable; (2.5)

30 < M <1,k € LP[0,T], ky € LM[0,T), here p%+pi2 =1, such that
0< kl(t), ky(t) a.e. t € [0,T] and Mk;(t)ko(s) < k(t,s) < ki (t)ka(s)  (2.6)
ae. t€[0,T], ae s€[0,T);

forae te€[0,T) and all y € (0,00), u > 0 for all u € f(t,y); (2.7)

BT et I
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POSITIVE LP AND CONTINUOUS SOLUTIONS 3

Jq € L”[0,T] and ¥¢: [0,00) — [0,00),¥(u) > 0 for u > 0,
continuous and nondecreasing with for a.e. t € [0,T] and y > 0, (2.8)
u > q(t)¥(y) for all u € f(t,y);
a>0 with 1<— - - (2.9)
pp-1 ‘ »
2% [kall Mkally (s 122 + fa” o)

and

Mkl Jy ke ()as)als) B)ds

18>0, B#«a with (2.10)

where

ky(t)

a(ty=M ”klllp

(2.11)

Then (2.1) has at least one positive solution y € LP[0,T] and either
(A) 0<a<llyl, < Band yt) > at)a ae. t € [0,T) if a <
or
B) 0<B<|yl, <aandyit)>at)Bae tc[0,T)ifB<a
holds.
Proof: Let E = (L7[0,T1,]| - ||,) and

C={yeL”0,T]:y(t) > a(t)lyll, a-e. t € [0, T7]}.

It is easy to see that C C E is a cone. Next let A = K o N;: C — 2F, where the linear
integral (single valued) operator K is given by

T
Ky(t) 2/0 k(t, s)y(s) ds,

and the multivalued Nemytskij operator N ¢ is given by
Nyu={y € L™[0,T] : y(t) € f(t,u(t)) ae. t € [0,T]}.

Remark 2.1: Note A is well defined since if z € C then (2.2)~(2.4) and [3] guarantee
that Nsx # 0.

We first show A: C' — 2€. To see this let x € C' and y € Az. Then there exists a
ES Nf:L‘ with

T
y(t) = /0 k(t, s)u(s)ds for a.e. t € [0, T].
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Now
T I
(" < [kt (/0 kg(S)U(S)dS) for ae. t € [0,7]

SO

T
1yll, < {l&4dl, ; ka(s)v(s)ds. (2.12)

Combining this with (2.6) gives

T
y(t) > ]\I/ k1(t)ka(s)v(s)ds > M a(t) lyll, = a(t) [lyll, forae.te0,T].

0 = all,
Thus y € C so A: C — 2. Also notice [3,6] guarantees that
A: C — 29 is upper semicontinuous. (2.13)
In addition note (8,9,10:pp. 47-49] implies K: L™[0,T] — LP[0,T] is completely
continuous, and Ny: LP[0, T] — 21T} maps bounded sets into bounded sets. Conse-
quently
A: C — K(C}) is completely continuous. (2.14)
Let
Qo= {y e L’0.7]: |, <o) and 9 ={ye L70,T]: iy, < B).

Assume that 3 < « (a similar argument holds if o < 3). It is immediate from (2.13) and
(2.14) that

A: CNQ, — K(C) is upper semicontinuous and compact.
If we show
lyll, <llzll, forall yc Az and z € C N 59D, (2.15)
and
lyll, > llz]l, forall y € Az and z € C NN, (2.16)
are true, then Theorem 1.1 guarantees that the operator A has a fixed point in
C N {2 \3). This in turn implies that (2.1) has at least one solution y € LP[0, T with

A< Hpr < a and y(t) > a(t)B for ae. t € [0, T).
Suppose z € C'N 0Ny, 50 ||z]l,, = o, and y € Az. Then there exists a v € Nyz with

T
y(t) :/0 k(t,s)v(s)ds for ae. t € [0,T).

R g



POSITIVE LP AND CONTINUOUS SOLUTIONS 5
Now (2.4) and (2.6) guarantee that

T 2
()] < ka(t) /O ka(s) [ar(s)| + asla(s)F | ds for ae. t € [0,T].

This together with (2.9) yields
1
T L2P2 by
o, < Vs, ([ fla6) + a2 o(6] " a5
0

T s
< k] el (2 [ e+ [azJ”lw(s)l”]ds>

L 2} 2 )
= 25 [l kel (llas |2 + o)™ 22

1

= 2% hal, lkall, (o + (ool 02
<a=|al,

and so (2.15) is satisfied.
Now suppose x € C'N 983, so H:th = and z(t) > a(t)p for ae. t € [0,T), and
y € Az. Then there exists a v € Nyz with

T
y(t) :/o k(t, s)v(s)ds for ae.t e [0,T].

Notice (2.8) guarantees that v(s) > q(s)y(z(s)) for a.e. s € [0,T] and this together with
(2.6) yields

T
y(t) > Mk‘l(t)/ ka(s)q(s)i(x(s))ds for ae. t € [0, 7).
0
Combining with (2.10) gives
T
Il > Ml [ bals)ats)ta(s))as

T
> Mk, /0 ka(s)a(s)bla(s)B)ds
> B = |z,

and thus (2.16) is satisfied. Now apply Theorem 1.1. ]

3. C[0,T] SOLUTIONS

In this section we discuss the Fredholm integral inclusion

T
y(t) € /0 k(t,5)f(5,4(s))ds for ¢ € [0,T], 3.1)
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where k: [0,T] x [0,7] — R and f: [0,T] x R — K(R). We will use Theorem 1.1 to
establish the existence of a nonnegative solution y € C[0,T] to (3.1). We will let |- |,
denote the usual norm on C[0,T] i.e., |ul, = supy ry|u(t)| for u € C[0,T1.

Theorem 3.1: Let 1<p<oo and ¢q 1<qg<oo, the conjugate to p,
k: [0,T] < [0,T] — R, f: [0,T] x R — K(R) and assume the following conditions are
satisfied:

for each t € [0,T), the map s~ k(t, s) is measurable; (3.2)
T g

sup ( / [Ic(t,s)[qu> < o0 (33)

tef0.7] \Jo

T
/ [k(t',s) — k(t,s)|"ds > 0 ast—t, for each t' € [0,T); (3.4)
0

for each t € [0,T), k(t,s) >0 forae. se0,T); (3.5)

for each measurable u: [0,T) — R, the map t— f(t,u(t))
has measurable single valued selections; (3.6)

for ae. t €0,T), the map urs f(t,u) is upper semicontinuous; (3.7)

for each v > 0,3 h, € LP[0,T] with |f(t,y)| < h.(t)
for a.e. t €[0,T) and every y € R with |y| < r; (3.8)

forae. t €[0,T] and all y € (0,00),u > 0 for all u € f(t,y); (3.9)

3g € LIY0,T] with g: [0,T] — (0, 00) and
with k(t,s) < g(s) for t € [0, T}; (3.10)

36,6,0<é6<e<Tand M0 < M < 1,
with k(t,s) > M g(s) for t € [6,¢l; (3.11)

Jh € LP[0,T] with h: [0,T) — (0,00), and w > 0 continuous
and nondecreasing on (0, 00) with (f(t,y)| < h(t) w(y) (3.12)
forae t€(0,T) and all y € (0, 0);

37 € LP[6, €] with 7> 0 a.e. on [6, €] and with for a.e.
t € [8,¢] and y € (0,00),u > 7(t) w(y) for all u € f(t, Y); (3.13)

da>0 with 1< < (3.14)

w(Q)SuPseio 7y fy k(t, 5)h(s)ds

R

P,
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and

. B )
38>0, B#a with 1>w(Mﬁ)ng(s)k(a,s)ds’ (3.15)

here o € [0,T] is such that

/( 7(s)k(o, s)ds = sup /( 7(s)k(t, s)ds. (3.16)
8

te[0.T] J 6
Then (3.1) has at least one nonnegative solution y € C[0,T} and either
A O0<a<l|yly<Bandyit)> Mafortelbelifa<f
or
(B) 0<B<|ylg<aandylt)y>MBfortecl(belif <
holds.

Proof: Let £ = (C[0,T1,]-|,) and
C= {y € C[0,T) : y(t) > 0 for t € [0,T] and tm{(ijn} y(t) > M|y|0}
€|0.€

Alsolet A = K o Ny: C — 2F where K: L?[0,T] — C[0,T)and Ny: C[0,T] — 21071
are given by

T
Ky(t) = / K(t, s)y(s)ds

and
Nyu={y € L?[0,T): y(t) € f(t,u(t)) ae. te€0,T]}.

Remark 3.1: Note A is well defined since if x € C then [4,5] guarantee that N rx # 0.

We first show A: C — 2C. To see this let z € C' and y € Az. Then there exists a
v € Nyz with

T
=/ k(t,s)v(s)ds for ¢ € [0,T).
0
This together with (3.10) yields
T
ly(®)] S/ g(s)v(s)ds for t € [0,7)
0
and so
T
wlo< [ alshutsrds. (3.17)

On the other hand (3.11) and (3.17) yields

min y(t) = mm/ k(t,s)v(s)ds > M / g(s)v(s)ds > Mly|,,

tefbie] te(b,e]
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soye C. Thus A: C — 2€ . A standard result from the literature [5,7,8,10] guarantees
that

A: C — K(C) is upper semicontinuous and completely continuous.

Let
Qo ={ueC0,T):|ul,<a} and Q= {ueC[0,T]:|ul, <pB}
Without loss of generality assume 3 < «. If we show

lylo < |z|, forallye Axand z € CN O, (3.18)

and

lylg > |z|, forallye Az and x € C NSy (3.19)

are true, then Theorem 1.1 guarantees the result.
Suppose x € C' N0, 50 ||, = o, and y € Az. Then there exists v € Nz with

T
y(t) ——-/0 k(t,s)v(s)ds fort e [0,T).

Now (3.12) implies that for ¢ € [0, T] we have

T
0] < / k(t, s)h(s)w(z(s)) ds < w(lely) /0 k(t, s)h(s) ds

w(e) sup/ k(t, s)h
te[0.T)

This together with (3.14) yields

T
lyly < w(a) sup / k(t, s)h(s)ds < a = |z|,
t(0.7] JO

so (3.18) holds.

Next suppose z € CNOQy, so |z|, =3 and MB < z(t) < B for t € [§,€], and
y € Azx. Then there exists v € Nyz with

- /T k(t,s)v(s)ds for t € [0,T].

Notice (3.13) and (3.15) imply

T €
:/ k(o,s)v(s)ds > | k(o,s)v(s)ds

8
/ k(o, s)T (z(s))ds > w(MpP) /6 k(o,s)1(s)ds
5
= |z,

Thus [yl, > |z[y, so (3.19) holds. Now apply Theorem 1.1. 0

A s+

s s
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