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Introduction

Mathematics in the context of chemistry

Chemistry is a practical subject, so why should mathematics now play such an
important role in its understanding? Coulson provided compelling answers to
this question in his presidential address to. the Institute of Mathematics and its
Applications (Coulson, 1973), when he reviewed the reactions of those
involved in the development of chemical ideas one hundred years earlier. He
reminds us, for example, that in 1878 Frankland wrote: ‘I am convinced that
further progress of chemistry as an exact science depends very much indeed
upon the alliance with mathematics’. This prophetic view was not shared by
most chemists of the time; and it was not until the development of the quantum
theory in the late 1920s, and the consequent impact on our understanding of
spectroscopy and electronic structure, that chemists started to develop the
mathematical tools that were relevant to the needs of chemistry. There are
many reasons for the growth of this symbiotic relationship, and it is helpful to
examine some of them in putting the objectives of this book into the proper
context.

The study of chemistry, whilst concerned intimately with the syntheses
and reactions of an ever increasing number of compounds, is concermned
basically with the discovery of patterns in the way chemical properties of such
compounds are interrelated. At the simplest level, for example, the shell model
of the atom (a mathematical concept) relates to the framework provided by the
Mendeleyev classification of the elements — the detailed understanding of
which requires mathematical insight to see how the periodic classification is
manifested in the quantum mechanical concept of the orbital model. The point
about this development is that the orbital model in turn provides an excellent
tool for understanding the nature of atoms and molecules, the microscopic
behaviour of which may then be explored with the aid of experimental
spectroscopic tgchniques. ‘

The intrusion of mathematics into chemistry provides the necessary tools
for quantitative model building that are required for the prediction, elucidation
and rationalization of chemical phenomena. It is very difficult indeed, for
example, to recognize and verify the presence of both simple (Fe!'t*) [>
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and unusual chemical species like HC;3,,,N (n =0,1,2,3,4) in interstellar
space [>, without the orbital model for atoms and molecules. Furthermore,
without the underlying warp of mathematics, and the weft of physics and
biology, chemistry would be reduced to a vast catalogue of apparently
unrelated facts and observations: instead of quantitative models there would be
‘rules of thumb’! It is because of this strong interrelation between mathematics
and chemistry (and physics) that we are able to understand the molecular
structure of biomolecules such as insulin, through the interpretation of the
results obtained from X-ray diffraction. Understanding molecular structure is,
of course, a precursor to understanding the chemical behaviour of atoms and
molecules.

Other branches of chemistry, whilst less concerned with the determina-
tion of mole-ular structures, are concerned more with the gathering of data by
observing chemical species reacting: in these situations, where time is the key

_variable, the results can only be interpreted and understood with the aid of a

knowledge of the form and solution of special kinds of differential equation.
The chemical objective here is to interpret the observed results in terms of a
mechanism for the reaction, and this necessitates plotting data in the form’
suggested by the theory in order to recognize the function that relates
concentration of a species and time. However, because there are errors present
in the data collected, therg are problems associated with the handling of these
errors when attempting to -establish the quantitative relation between
concentration and time. The proper treatment of the problems experienced
in these kinds of situation involves understanding the ideas of error
propagation and statistics — both of which involve using the tools of
calculus. In fact, estimating and assessing the consequences of error
propagation in some form or other pervades all experimental science.

This book is written to help those for whom mathematics has always been
a problem, because the subject has not been studied to the depth required for
understanding the infrastructure of chemistry. We hope that it will also help
those who have studied mathematics in more depth, but the interrelation
between their knowledge and the requirements of chemistry is not fully
developed. Typically, although this latter group may have an elementary
knowledge of complex numbers and even group theory, the connections with
structural, spectroscopic and quantum chemistry are unlikely to have been
made. Furthermore, despite their knowledge of mathematics before entering
higher education, much of the detail of what has been learnt earlier has
become forgotten and unused. In fact, there is often a feeling of anxiety (and
associated lack of confidence) in many students when it becomes apparent that
important areas of chemistry are going to become inaccessible without some
sound working mathematical tools in their baggage.

In view of these well-known problems, we have set ourselves the aim of
raising the threshold for the onset of anxiety, by presenting a selection of
mathematical ideas and techniques in the form of a tool-kit set within a
chemical context. We therefore adopt the deliberate policy of avoiding much
formal proof in favour of a more pragmatic approach — simply because the
mathematics of chemistry is linked to Pphysical phenomena and, for the most
part, the exception to the rule is not the norm.
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The material covered in this text splits broadly into the two areas of
calculus and linear algebra, prefaced by an introductory tour through some
necessary mathematical grammar and symbolism. The fact that the models
used in understanding and rationalizing real physical problems can involve the
simultaneous use of tools from each of these areas (and also the deployment of
other techniques) is recognized from the outset in our choice of topics and is
seen, for example, in the ubiquitous and apparently simplest of problems in
requiring the best fit of observed data to a linear or quadratic form.

Organization of the text

The text is organized so that the first three chapters provide a review of
elementary principles and notation in algebra, trigonometry and calculus. This
review can be regarded as revision or a rapid survival course. depending upon
the background of the reader! There is then a reiteration of some of the
calculus before further developments and applications are considered within
the general contexts of kinetics, thermodynamics and spectroscopy. The
remainder of the text is concerned more with topics that come within the area
of mathematics termed linear algebra, where time is spent developing
techniques involving the matrix and vector notation, in preparation for all
kinds of applications (primarily those associated with spectroscopy and
bonding theory). The inclusion of these topics is most important as they also
provide the tools for dealing with the anisotropy of directional chemical
properties associated with. for example, the consequences of electric and
magnetic fields interacting with matter. We are quite honest about our general
style of approach and choice of content. In no way can we hope to be
exhaustive, and we make this clear at the outset. Our basic aim is to provide
some useful tools which, in many cases, act like keys for opening doors into
other areas of mathematics. Thus, for example, armed with ideas of functions,
calculus and complex numbers, it is possible to gain access to the theory of
functions of a complex variable as a first step in developing the understanding
of the theoretical modelling of scattering processes and advanced spectro-
scopic methods used in the laboratory — just to highlight two applications.
Throughout the text marginal notes are used for comment, and citations
of references, equations, sections, etc. All references cited by author name are
collected in the References section at the end of the text. Answers are also
included for all the problems given in the text, along with some working and
hints. Examples and problems of a chemical nature are used as far as possible,
in the knowledge that the detailed chemistry will require students to consult a
physical chemistry text. It is almost inevitable that some of the examples will
be premature; however, the problems are self-contained and, for their
execution, do not rely on a detailed knowledge of the chemistry. In
developing the mathematics, we use current widely accepted physical
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chemistry texts either to illustrate the application of mathematical principles,
or to provide additional mathematical commentary. Further examples and
problems in the more basic aspects of mathematics may be found in
Foundation Maths by Croft and Davison.
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1 Numbers, symbols and rules

This chapter provides

. a working knowledge of some of the very basic building blocks
associated with numbers, and the rules determining their manipulation

. confidence in handling numbers with associated units
. a simple introduction to algebra and equations

. an insight into the need for extending the number system to include
complex numbers

Mathematics, like much of chemistry, is concerned with numbers, symbols,
and rules for their manipulation. Searching for pattern also forms an important
part of the rule development. The complexity of the symbolism in
mathematics, delineated by particular rules, often obscures meaning and
comprehension as, within a given subject area, the background knowledge
required is often hierarchical in nature, and the consequent understanding of
the working of the mathematics may become difficult — especially if there are
gaps in this background knowledge.

The development of ideas in chemistry follows a very similar hierarchical
pattern and much of the associated thinking and experience is basically related
to working with numbers, symbols and rules. Numbers permeate chemistry in
terms of experimentally measured values, or in the appearance of quantum
numbers, associated with physical properties. Although symbols are used in
chemical equations, according to well-defined rules, several layers of meaning
are usually associated with such equations which are, in effect, mathematical
statements. In many cases it is the greater familiarity with chemical symbolism
that makes it feel more comfortable; however, in many situations, it is the
implicit message carried by the symbolism that is important. In the
mathematical situation it is therefore more difficult for the chemist to
perceive, or even appreciate, the significance of what is not immediately
apparent. An example will make this clear: when dealing with numbers or
symbols in mathematics or chemistry, the context makes it clear whether order
(commutativity) is important. Thus 2 x 3 =3 x 2 or xy = yx, if x and y are
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symbols representing numbers multiplied together (it is common practice to
omit the x sign when there is no ambiguity). The basic rules of handling
numbers include commutativity for + and X, which is nearly always assumed.
In chemistry, the analogous symbolism has to be read in a different way,
because IBr is not the same as IrB (or BIr!). Given the symbols for the
elements there are special rules that inform the chemist about how to order
these symbols and manipulate them in equations: thus HCN and HNC are
recognized as isomers, but for FeSO4 and FSeOy, the latter compound has no
sense when interpreted in terms of the rules of valence. Thus, it is clear that in
any symbolic approach of classification or definition, the rules for using the
symbols must be recognized; also, there may be other factors that need to be
understood — both in the mathematical and chemical situations. Many
examples of the former will be discussed in this and following chapters; it
merely suffices to say that, in the chemical situation, while the equation C +
2H,0 = CH4 + O, may make sense in term of conservation of matter, it may
not make sense in terms of either kinetics or thermodynamics (or both!). The
chemist is aware of the background to the use and misuse of equations in a
chemical context; when it comes to the same sort of ideas set out in a
mathematical context, it is the background (implicit) assumptions that may be
absent or undeveloped. We hope, therefore, that in this introductory chapter on
numbers and symbolism, we may prepare the reader for further developments
and explorations of areas of mathematics that provide important tools for the
chemist. The first section of this chapter is concerned with numbers of
different kinds, and the rules for their manipulation; this is followed by
sections on algebra and equations before returning to a discussion of an
extension of the number system to include complex numbers.

>

The symbol / for division
is sometimes referred to
as a solidus.

Kinds of numbers

Real numbers come in various kinds: integer, rational, decimal, irrational.
Integers are the counting numbers (no decimal point) extended to include zero
and negative values: thus the ser I ={...,—1,0,1,...} contains all the
integers. Integers can be either odd or even, depending whether or not they are
divisible by 2; an integer p, not divisible by another integer (apart from :t]

+p) is called a prime number. Rational numbers, or fractions, are of the form <
or /s (for example 2/3) [>, where r, s are integers (s # 0) corresponding to
the numerator and denominator, respectively. Clearly, if s = 1, we see that
integers are included in the set of rational numbers. A rational number can
always be written as a decimal number, though not necessarily in terminating
form: for example 1/3 = 0.333 33 ... Decimal numbers which have an
infinite number of digits after the decimal point, but with no repeating pattern,
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Thus multiplying both
sides of an inequality by
a negative nurber
changes the sense of the
inequality.

are termed irrational numbers, and some such numbers play an important role
in chemistry: for example, 7, v/2, e (the base for natural logarithms [>), etc.

A decimal number that can be written as a rational number must possess a
finite number of digits after the decimal point or an infinite number with a
repeating pattern. Thus, for example, 1.128 can be written as a rational
number, since 1.128 = 1.128 x 1000/1000 = 1128/1000 = 141/125, after
cancelling the common factor of 8 from numerator and denominator. On the
other hand, for the number with the repeating pattern of 128, we can proceed
as follows: let x=1.128 128------ , then 1000x — x = 1127 implies >
x = 1127/999.

The necessity for recognizing the difference between an integer and a
decimal number is important within the context of computing, as a degimal
number could take twice the storage space of an integer. Thus, a decimal
number essentially requires storage locations for the integers before and after
the decimal point (but this is not exactly how the number is stored in practice).
The storage of irrational numbers presents an especially awkward problem
because they must always be truncated to a decimal number with a fixed
number of digits after the decimal point: the computer software (and hardware)
therefore determines the size of the error in storing such numbers. This
problem can be demonstrated on most electronic calculators by displaying the
number 2 and then pressing the square root button six times (say). If the
squaring button is now pressed six times, then a decimal number close to 2 is
usually obtained.

Relations involving numbers

Apart from magnitude and sign, real numbers can be ordered in an increasing
or decreasing sense: so, for example, —1 is less than 2, but 2 is greater than
—1; also —1 is greater than —5, etc. These ordering relations [> are written
symbolically as —1 < 2,2 > —1, —1 > —5, respectively. In general terms x is
larger than y if x — y is a positive number; if x < y then x — y is a negative
number. Thus —2 < —1,but2 > 1 [>. If x is very much larger than y, then we
often write this relation as x >> y.

From a mathematical point of view it is often necessary to discuss
collections of numbers, rather than focusing attention on individual numbers.
In this sort of situation, which we shall meet first in the discussion of
functions, we use the shorthand R to represent the wiiole collection (set) of
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For an individual integer,
Jjywewritethisasjelor
j € R, depending upon
the context.
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>

Indicated by - or x (the
latter when there is any
ambiguity with the sign
for the decimal point).

1.2

real numbers. From time to time it will be necessary to use other shorthand
forms to represent parts (subsets) of this complete coliection. So, for example,
the set of all integers, [, is contained in R, and we write this as | C R >;
similarly, we may wish to refer to the subset of all positive numbers.

Operations on numbers

The manipulation of expressions containing fractions involves the use of a few
simple rules:

Addition or subtraction

Here all fractions are rewritten with a lowest common denominator (the lowest
number into which all denominators will divide).

Worked example

a) - -_——— = e - = ————— - = -,

@ §t2737676 6" 6 63
With practice, it is possible to miss out the first step involving the
rewriting of the (three) fractions in terms of the common denominator.

2 1 1 12-249 19
b) S—ct+-—=— T2 "7 wh i d i-
(b) 3 9+2 3 3 where 18 is the lowest common denomi

I 1 1 1.3 2 1+3-2 2 |

nator.
2 1 6+ . .
(c) ;+3_:%yi’ where x and y are symbols representing arbitrary
y

numbers, neither of which is zero.

Multiplication

Multiplication of fractions follows the simple rule of taking the product > of
the two numerators divided by the product of the two denominators.

Worked example

21 2 1
(a) 36180 after cancelling the common factor 2 in both numerator
and denominator.
ac -ac
®) 375
¢ ¢
© 33w
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