


I 1)

[l

Y

i

N

A VRBE S0

Richard G. Peddicord - Southern Oregon State College
George Converse - Southern Oregon State College

w Wm. C. Brown Publishers




3

Baok Team

Editor Kathy Shields
Software Coordinator Lisa Schonhoff
Production Coordinator Peggy Selle

Wm. C. Brown Publishers

President G. Frankiin Lewis

Vice President, Publisher George Wm. Bergquist
Vice President, Operations and Production Beverly Kolz
National Sales Manager Virginia S. Moffat

Group Sales Manager Vincent R. Di Blasi

Vice President, Editor in Chief Edward G. Jaffe
Marketing Manager Elizabeth Robbins
Advenising Manager Amy Schmitz

Managing Editor, Production Colleen A. Yonda
Manager of Visuals and Design Faye M. Schilling
Production Editorial Manager Julie A. Kennedy
Production Editorial Manager Ann Fuerste
Publishing Services Manager Karen J. Slaght

WCB Group

President and Chief Executive Officer Mark C Falb
Chairman of the Board Wm. C. Brown

Cover design by Dale Rosenbach

Copyedited by Jane Dowd

IBM@® is a registered trademark of Intemational Business Machines Incorporated
WordPerfect® is a registered trademark of WordPerfect, Inc

Copyright © 1992 by Wm. C. Brown Publishers All nghts reserved

Library of Congress Catalog Card Number: 91-55472

ISBN 0-697-14956-0

No parn of this publication may be reproduced, stored 1n a retneval

system, or transmitted, in any form or by any means, electronuc,

mechanical, photocopying, recording, or otherwise, without the

prior written permission of the publisher.

Printed in the United States of America by Wm C Brown Publishers
2460 Kerper Boulevard, Dubuque, 1A 52001

109 8765 41321



PREFACE

This workbook attempts to make the task of learning BASIC a successful and enjoyable
one. For this to happen, the student must have access to a computer that runs some version of
BASIC, and someone to help them--an instructor, lab assistant, classmate, or friend. This
1991 Edition relies heavily on the student trying all the exercises on a computer. Only with
extensive practice is it possible to get the keyboarding and logic skills necessary to work
successfully with computers.

The main features of the workbook are its nonthreatening, hands on, keep it light and
simple, do-it-right approach. Although designed for college students, the workbook can be
used by practically anyone wanting to learn BASIC and willing to put in the time and effort.

The workbook contains enough material for a one-year course in generic BASIC for
college students. It has evolved from the authors’ Introduction to BASIC (CS151) and
Advanced BASIC (CS152) at Southern Oregon State College. The first-term course is
designed to give liberal arts students some valuable experience with a programming language.
Part One, chapters 1 through 6, supports this first term. Part Two, chapters 7 through 10,
supports a second term, for computer-and math-oriented students who wish to continue their
study of BASIC, either on their own or for credit. The material in Part Two becomes quite
challenging, and we use it to prepare our students for local programming contests.

This workbook has evolved over several years, and we hope that it gets better with each
edition. This edition relies on students having access to a computer.

In keeping with this emphasis on lab work, we have incorporated specific data, where
possible, and have provided the correct answers to many exercises. This allows students to
check their work as they go along, which gives them a strong sense of accomplishment.

Solutions are presented in generic BASIC, so they will run on almost all versions of
BASIC. When a command has different forms for different computers, we give the correct
syntax and usage instructions for the popular versions of BASIC now running. We thank our
CS151 and CS152 students for their many valuable suggestions and corrections; Jon
Montgomery for proofreading the original manuscript; and Lee Hill and Bob McCoy for
suggesting many exercises. Barbara Cantrell made the revisions suggested by the proofreader.

We also thank Kathy Shields, of Wm. C. Brown Publishers, for soliciting several reviews
and returning their comments, all of which were most helpful. We have made the
recommended changes, and we feel the workbook is much improved as a result. In this
edition, we stress structured programming, restrict the use of GOTO, and encourage
WHILE/WEND.,

The following Trademarks appear in this workbook:

IBM is a registered trademark of International Business Machines
WordPerfect is a registered tradermark of WordPerfect, Inc

Richard Peddicord and George Converse
Department of Computer Science
Southern Oregon State College
Ashland, Oregon
September 4, 1991
ix



TABLE OF CONTENTS .
PREFACE . .. i it e e e e e e e e e et e e e e e et e e e ix

Part One. Beginning BASIC
1. GETTING STARTED

1.1 REM, LIST, RUN, and NEW . . ... ... .. . . . it 1
1.2 INPUT, PRINT, SAVE, and LOAD .. ... ... ... .. . .. .. ... 3
1.3 The LET Statement . . . . ... .ottt ittt et it ettt e et eean 6
1.4 Arithmetic Expressions . . . .. ... ... ... ..ttt 8
1.5 Immediate Mode . . ....... ... . .. .. i e, 12
1.6 String Variables . . ... .. .. .. . .. . e e 13
1.7 Reviewand HelpfulHints . ... ... ...... ... ... .. .. ... ... ... 13
1.8 Laboratory EXercises . .. ... .. ... inn i ittt 14
2. BRANCHING OR SELECTION
2.1 Review of INPUT, LET, and PRINT . ... .. ... ... ... 16
22 READand DATA . .. ... 19
2.3 IF.THEN Statements .. ... ...ttt ittt 21
24 STOPand GOTO . ...ttt it e e e et 24
2.5 Wageand Tax Problems . . ..., 26
2.6 Laboratory EXercises . .. ... ... ...ttt 29
3. LOOPING
3.1 FOR/NEXT . . .. o s i 34
3.2 WHILE/WEND . ... ... i 37
3.3 PracticingwithLoops . ... ..... ... ... ... .. 39
3.4 Elementary Statistics with PRINTUSING .. ...................... 41
3.5 Nested LOOPS & oo o v vt e, 45
3.6 Laboratory EXEICISEs . . . . ... v vt i 49
4. STRUCTURED PROGRAMMING
4.1 Subroutines . ........... . ... 55
4.2 Subroutines within Subroutines . . . ... ... ... .. .. 56
4.3 Programming without Line Numbers . . ... .................00.... 61
4.4 Adding Line Numbers to NumberlessCode . . . . .................... 64
4.5 Reviewand HelpfulHints . ... .............. ... . . 0. 67
4.6 Laboratory EXercises . ................. it 68



5. ONE-DIMENSIONAL ARRAYS

5.1 USINZAITAYS . . oo oo e emine mome et s e 76
5.2 Simple Word Games .. ..........c..uotvemnnertrnien 79
5.3 Elementary Statistics Again . . . .. ..o 82
5.4 Generating Arraysby Formula . . . ............. i 84
5.5 Assorted One-Dimensional Array Exercises . ..............c..c0u.. 86
56 TheSand SOTt . . o v vt v it it it et et e et 89
5.7 Laboratory EXEICISES . . . o v v v v v vm o oiie e 92
6. WORKING WITH STRINGS
6.1 TheLENgthofaString .. ... ... ... ... cttiiinanaenanoy 96
6.2 Joining Two Or MOre SIrings . . .. .. .. oo vvi it ienn 97
6.3 LEFT$, MID$,and RIGHTS . . . . .. ... ...t en 98
6.4 TheGameof Hangman . .......... ... .t inennnnnennenen 102
6.5 Laboratory EXercises . ... ... ...vv i 104
Part Two. Advanced BASIC
7. SEQUENTIAL FILES
7.1 Floppy and Hard-Shell Diskettes . ............... ..o ooonnn. 107
7.2 CreatingaSequential File . ... ............. .. 108
7.3 ReadingaSequential File .. ............... ... ... 111
7.4 Some Exercises Using Files . . . .. ... ... ..y 114
7.5 Merging Files . . . .. ..o e 117
7.6 An Accounts Receivable Project . . .. ... ... ... i 118
7.7 Laboratory EXEICISES . . . .. .. vt i i ii e oot 123
8. FUNCTIONS
8.1 Built-InFunctions .. ... .. ... ...ttt 126
8.2 User-Defined Functions . .......... .. 0., 133
8.3 Reviewand HelpfulHints . ... ........ ... ... ey 138
8.4 Laboratory EXErcises . ... ... ... imiiiin it 139
9. GRAPHICS
9.1 Two-Dimensional Graphics Using Arrays . .. ... ......... oo 141
9.2 Plotting Functions . . .. ... ... . i i i e 147
9.3 Chartsand Graphs . . . . .. ... ... . .. i e e 154
9.4 Fractiles ... ... ... ittt i i i e e 159
9.5 Animation . ... ... ... ...ttt e i e e e 163
0.6 Laboratory EXEIrCiSes . .. .. .. oo vniiinionnenenonennnennenns 164



10. APPLICATIONS

10.1 The QuUiCk SOIt . . . . .. .ottt ittt it ettt 167
10.2 Database Techniques . . . ... ... .. it 174
10.3 Laboratory EXercises . . . . . . .. ..ot iit ittt e 187
APPENDIX: Reserved Words . . . . . .o i i it i it ittt ittt ie e a i oo 189
INDEX &t ittt ittt it ettt e e e e e e e e 197

vii



CHAPTER ONE: GETTING STARTED

BASIC is one of the most popular programming languages in use today, and this popularity
stems from several features of the language. It is easy to learn, it has a powerful, complete
set of instructions, and many personal computers use BASIC as their "native" language, the
language that comes up when the power is turned on. For these reasons, it has become the
current standard for a beginner’s programming language. In fact, the name is short for
Beginners All-Purpose Symbolic Instruction Code. It was developed at Dartmouth College to
give students an easy-to-learn, but complete, programming language.

In this first chapter, we will describe step by step how to enter and run your first program,
and we will introduce you to four BASIC statements, REM, INPUT, LET, and PRINT, and
the system commands LIST, RUN, and NEW. With these few statements and system
commands you can document your program, input numbers or words from the keyboard,
process the input, and show the results on the screen.

You will also learn about variables, how to put values in them, how to print them, and
how to use them in arithmetic expressions.

1.1 REM, LIST, RUN, and NEW

Now it is time to find a computer that runs BASIC and someone to help you when you get
stuck. Beginners get stuck all the time, and it is very important to have help available, that is,
someone familiar with the particular system you are working on.

In what follows, we assume that you are at a computer, in BASIC, and that you have a
formatted diskette ready to store your programs.

When BASIC comes up in WAITING mode, waiting for you to enter a program statement
or a system command, enter the following program, by typing one line at a time, exactly as
printed below. Press the Enter (Return) key when your typed line looks correct. Turn on the
CAPS LOCK function if you want all capital letters. Many older BASIC systems require all
capital letters.

10 REM THIS PROGRAM WILL NOT DO ANYTHING
20 REM BECAUSE IT CONSISTS ENTIRELY OF
30 REM REMARK STATEMENTS

Type each line starting with the statement number, then a space, then REM, then three
spaces, and then the message. You can change the line, using the editing keys, up until the
time you press Enter.



2 Getting Started

When you are satisfied that the line the cursor is on is what you want the system to see,
press the Enter (Return) key. The system will read your line, interpret it, and then switch back
to WAITING mode, where it is waiting for you to type in another line of your program or a
system command.

If at any time you wish to see your program on the screen, type LIST (without a line
number) and press Enter. Your program will be listed on the screen, in increasing order of
the line numbers that start each line.

So as soon as you are done with all three lines above, type LIST, press Enter, and your
program should appear.

The purpose of the REM statement is to make a remark about the program for the benefit
of someone reading it, either a comment that clarifies how the program works or some
identifying information.

When working on exercises to be turned in, begin each separate program with your name,
the exercise number, and the date. This identifies the work.

Notice in the above program that the individual lines are numbered, in this case, by 10,
20, and 30. These are called line numbers. You make them up as you enter your program,
line by line. Most people start at 10 and go up by 10s, so that they can insert statements later
if necessary.

To run your program, that is, have the system execute the commands you have
programmed, type RUN and press Enter. The system will start at the lowest numbered
statement and begin executing your program statements, one after the other, until it either runs
out of instructions, comes to a STOP or END, or encounters an error condition.

If you haven’t already done so, RUN your program. It should do nothing, and the system
should return to WAITING mode. If you get an error message when you RUN your program,
LIST the program and check it carefully. Call someone to help you if you are stuck at this
point.

Before beginning a new program, erase the current program by typing NEW (no line
number), and then press Enter.

So type NEW, press Enter, then type LIST, press Enter. No program will appear. You
are ready to start the first exercise.

The solution to each exercise appears immediately below the exercise. Try each exercise
on your own first, then compare your work with the solution given. There are many ways to
solve a particular exercise, but we show only one.

2k 3l 3k 3¢ 3 e ake 3k 3k 3 e 3 4e spe 3 3k sk 3 e 2k s k¢ 3 e 3k ke e ke Sk 3k Sk 3k 3k ok k¢ 3k 3k 2k ok ok ke e ke ok ok o ok K ok

Exercise 1.1.1 Write a program containing three remark statements that give, respectively,
your name, the phrase LAB ASSIGNMENT 1, and the date. LIST your program, and then
RUN it. It works if it does nothing and produces no error messages. If you get an error
message, you will have to debug your program.

Solution and Discussion:

10 REM DIRE STRAITS

20 REM 1.AB ASSIGNMENT 1
30 REM 01/01/91



Getting Started 3

1.2 INPUT, PRINT, SAVE, and LOAD

In what follows, you will write a simple program that asks you for a response and then
prints your response twice. Go ahead and enter it, LIST it, and then RUN it. Remember to
type NEW and press Enter before you begin work on a new program.

10 REM SIMPLE PRINT

20 INPUT "Do you want to learn BASIC";A$
30 PRINT A$

40 PRINT A$

Switch the CAPS LOCK off and on as needed or, if you prefer, you can type all lowercase
or all uppercase. Some systems require all uppercase (capital) characters.
As soon as you press Enter you see the message

Do you want to learn BASIC?

appearing below the RUN command and starting at the far left of the screen, with the cursor
flashing after the question mark. The system is waiting for you to type in something and then
press Enter. As soon as Enter is pressed the system takes your response and stores it in the
memory location named A$, and goes on to the next instruction, in this case 30.

Because the name A$ ends in a dollar sign (3) the system expects you to type in words
rather than a number. So it will accept just about anything you can type on the keyboard, and
it will store all the characters you entered, starting a certain location in main memory. The
system takes your variable name, A$, and puts it in a table, and follows it by the actual
location in memory. Thereafter, whenever the variable name A$ appears in your program,
the system uses the actual memory location. This is a standard feature of all programming
languages: you just name your variables, and the system takes care of where to put them,

So type in something and press Enter. You should see your response appear in duplicate
on the two lines below the input prompt message, because in lines 30 and 40 whatever is
stored in A$ is printed.

You should see your response printed twice, once per line, and the system will then return
to WAITING mode.

If you have trouble at this point, enter LIST (without a line number) and press Enter.
Your program will appear on the screen, in increasing order of line number. Locate and
correct any errors, and RUN your program again.

Ask your instructor or consult the Appendix about the best way to fix errors on your
particular system. For most personal computers, you can fix any line that appears on the
screen, and then press Enter and the system will accept the changed line. On mainframe
systems, this may not be possible. You can always retype the line and press Enter. The
system will replace the old line with the new line. If you just type a line number and press
Enter, the line with that number will be removed from your program.

If you need to insert one or more characters in the middle of a line, press the INSert key,



4 Getting Started

if you have one, and start typing. Everything to the right of the cursor should move to the
right as you type. See if the cursor changes when you go into INSert mode.

When you RUN the above program, BASIC starts at the lowest numbered line, in this
case 10. But since it is a REM statement, BASIC skips over it and immediately goes to the
next numbered line, in this case, the INPUT statement at line 20. In line 20, the system prints
the input prompt (the message within double quotes) and waits for the user to enter text. As
soon as it is entered, the text is stored in A$. In line 30, the contents of A$ are printed.

Variable names that end in a dollar sign are called string variables because they hold a
string of symbols; that is, letters, digits and punctuation marks are strung together from left to
right. In short, string variables hold words.

Variable names can be any length, but only the first few characters are used by the system.
Earlier versions of BASIC may be limited to 2 characters plus the dollar sign; more recent
permit at least 8 characters in a name. The shorter the name the less you have to type. The
longer the name the more descriptive it can be.

As you have seen, a BASIC program consists of one or more lines of code. Each line has
a line number followed by one or more statements. You will learn what the various
statements look like later on.

It is customary to begin numbering your lines at 10, and to go up by 10 each new line. If
you forget something, or have to insert a short program between two lines, this will give you
enough room. The system always lists your program in increasing order of line number, both
on the screen and when it is printed. We want you to try the following exercise on your own.
Don’t look at the solution until you have LISTed and RUN your own solution and tried to
debug it. Remember to type NEW to clear the current program, so that you can start a new
one. The system only holds one program at a time.

3 2k 2k 46 ke 24 b ok 2k ke 2k 3k 2k e ke 3k 2k ke k¢ 3 e 2k o 3k 3k 2k sk 4 2k 2k 3k 3 ke 3 e 3¢ 3 3K 3 3¢ b 3¢ ke 3¢ K 3k 3 k¢ e

Exercise 1.2.1 Ask for the user’s name, and then print

THANK YOU, <name>
THANK YOU, <name>
THANK YOU, <name>

as shown above, that is, three times, once per line. The notation <name> means to put an
actual name here, the name entered by the user. If the user’s name is ALICE the output should
look like this:

THANK YOU, ALICE
THANK YOU, ALICE
THANK YOU, ALICE

Solution and Discussion:

Use an INPUT statement with an input prompt and put the result in a string variable called
N$. Then construct the PRINT statement and make two copies of it. The first PRINT
statement should start with the message THANK YOU, in double quotes, followed by a



Getting Started 5

semicolon (;), followed by the variable name N$ (without quotes around it). To duplicate the
PRINT statement, add 10 to its line number and press Enter. Do this again to get the third
PRINT statement. If you LIST your program, you will see all three PRINT statements.

10 REM SOLUTION 1.2.1

20 INPUT "WHAT IS YOUR NAME";N$
30 PRINT "THANK YOU, ";N$

40 PRINT "THANK YOU, ";N$

50 PRINT "THANK YOU, ";N$

The semicolon (;) in line 30 means "close it up”, that is, do not insert any extra spaces
between the preceding print item and the one after the semicolon. If you put a comma
between two print items, the screen will "tab" to the beginning of the next tab zone. There
are usually five tab zones across the screen, each about 15 characters wide.

The semicolon in line 20 means something different. It means to display a question mark
after the input prompt, just before the flashing cursor. This reminds the users that they are
supposed to answer something. If you don’t want the question mark to appear, try a comma
instead and see what happens on your system.

If you are having trouble getting your program to run, LIST it and see what you have. If
you need to change part of a line, use the cursor keys (the ones with arrows pointing in all
four directions) to move to the area you want to change. Make the change and then press
Enter. The new version of that line will replace the older version. You must always press
Enter before the system will replace the old with the new.

ALWAYS PRESS ENTER AFTER YOU HAVE FIXED A LINE OF CODE.
OTHERWISE, THE SYSTEM WON'T TAKE THE CHANGE!

e 24 e 2k abe e ok ake 2 2 3 ok 2k 3k ok 2 3 2k a2k a4 2 3k 2 3 34 2 2k 2k 2k ke ke e 3k k¢ 3 ke e 3 2k 3k 3 A 30 o e e o aK

Exercise 1.2.2 Ask for the user’s first name. Put it in F$. Then ask for the last name and
put it in LS. Then print the full name in "registrar” format, that is, last name, followed by a
comma and a space, and then the first name,

Solution and Discussion:
This exercise is kind of tricky to get completely right. The hard part is the PRINT statement.
The main things to remember are:

(1) Print items inside double quotes are called literals, and they are printed exactly as they
are written.

(2) Print items not inside double quotes are called expressions, and they are computed and
then printed. If the expression is a single variable, its current value is printed.



6 Getting Started

10 REM CONVERT NAME TO REGISTRAR FORMAT
20 INPUT "WHAT IS YOUR FIRST NAME";F$

30 INPUT "WHAT IS YOUR LAST NAME";L$

40 PRINT LS$;", ";F$

In generic BASIC, a semicolon (;) between print items tells the print routine to close it up,
that is, add no extra blanks (spaces) between the items it separates, So in line 40 after the
content of L$ is printed, the first semicolon causes the literal ", " to be printed immediately
following the last letter of the last name. The second semicolon makes the first letter of the
first name start right after the space. The prompt message is optional in the input statement,
but it is usually a bad idea to omit it. Try this program without the prompts to get an idea of
how confusing it is to just see a *?” on the screen.

You will want to save your programs to your diskette when you stop a work session, so the

command is
SAVE "< filename>"

where <filename> is a filename that conforms to your particular system’s disk operating
system. Ask your instructor which filenames to use.

Whenever you wish to transfer a stored program from diskette to main memory, so that
you can work on it, place the proper diskette in the drive and enter

LOAD " < filename"

where <filename> is the same name you used to save the program.

1.3 The LET Statement

In addition to string variables (ending in a dollar sign), the system recognizes two other
kinds of variables: integers (the variable name ends in a percent sign) and so-called real
numbers (no special symbol after the name). In what follows, we will be working with real
variables. Their names have no special symbols at the end, and they store a wide range of
values with about nine decimal-digit precision.

Enter and RUN this program:

I0 REM PRINT A CONSTANT
20 LET X = 1.23456789
30 PRINT X

See how many digits appear.
The LET statement in line 20 always has a variable name after the word LET, and this
name is always followed by an equal sign. After the equal sign is always an expression, in



Getting Started 7

this case, a simple constant.
LET statements also work with string variables. Try this program:

10 REM PRINT A STRING CONSTANT
20 LET X$ = "GOTCHA"
30 PRINT X$

You should see the word GOTCHA appear at the left of the screen.

Remember that a variable name, or variable for short, is the name for a place in memory
that holds the current value of the item in question. There are two main kinds of data items:
string variables (end in dollar sign) and numeric variables (percent sign or no sign).

The system finds a place in main memory to hold items of the specified type, and it links
your variable name to the place in memory it has picked out. Every time you refer to the
variable name in your program, the system is working with the main memory location that is
linked to it.

The real variable, with no type symbol, is the most popular variable. It holds numbers
with decimal digits. Some examples of variable names include AA, D, X, XH, Y3,
BALDUE, RECEIPTS. The first character must be a letter, and the remaining characters can
be letters or digits. Any version of BASIC can handle at least 2 characters, and many systems
can handle 8 and more.

If you have a variable like X, you put a constant into it, using the LET statement

LET <variable > = < expression >

where <expression> in this case is a real number constant and < variable> is the single
letter X. The resulting statement might look like this:

20 LET X=4.23984

The word LET serves to remind us that the = sign in BASIC is not the same as the =
sign in algebra. LET says to transfer the value on the right side (of the equal sign) into the
variable on the left side. The variables on the right, if any, are not changed. Remember,
LET goes from right to left. Although we show solutions in capital letters, many systems
will accept both upper- and lowercase characters, Clear your program memory by entering
NEW, and try the next exercise.

3 3k 2k b e e 2k a4 e e 2 e e 3 3k e e ok 3K sk sbe 3k ok ok b ake sk 3 ok ok o 3k 3 3 ok ok o e o ok ok ke o o oK ok sk 3K ok

Exercise 1.3.1 Put the value 12.345 into a real variable called TH, and then print the label
'TH=" followed by the value of TH.

Solution and Discussion:

Copy the format shown in line 20 above. Then in the print statement use the literal "TH= "
for the first print item, follow it by a semicolon, and then put the print item TH without quotes
around it. The system will then print the stored value. If you put double quotes around the



8 Getting Started

variable name, the system will print just the name.

10 REM ASSIGN A VALUE THEN PRINT IT
20 LET TH=12.345
30 PRINT "TH= ";TH

Several things should be mentioned. In line 20, you can see that there are no spaces before
or after the = sign. It would have been fine to have spaces before and after the equal sign,
but none are needed because the equal sign terminates the reading of the variable name TH.
The system then knows that whatever lies to the right of the equal sign is an expression that
will compute to a real number, and that real number will be placed in the memory location
whose symbolic name is TH. In this case the expression is simply the constant 12.345. In line
30, however, we leave one space after the reserved word PRINT so that the system will
recognize the word PRINT.

Now it’s time to do some arithmetic.

ke ke 3k ok 2 K 9K o e 2 2k 3 ¢ 8 a3 240 8 98 3 ke a5 2 2 e o ok e 6 2 o e 35 o 3 2k a8 o 3 ok 3 o oK 2 3 ok o oK

Exercise 1.3.2 Assign the values 3.4, 78.97, and 102.78 to the variables A, B, and C,
respectively. Then set D equal to the sum of A, B, and C. Then print the sum D,

Solution and Discussion:
Use three LET statements to assign the values, another LET statement to compute their sum,

and a print statement to print the result.

10 REM COMPUTE SUM OF 3 NUMBERS
20LET A=34

30 LET B=78.97

40 LET C=102.78

50 D=A+B+C

60 PRINT D

70 END

Enter and run the above program. You should get 185.15.
1.4 Arithmetic Expressions

It is easy to get BASIC to do arithmetic for you: use + for addition, - for subtraction, *
for multiplication, / for division, and * for exponentiation (the power operator). Some
systems use a different symbol for exponentiation, but the two most common today are the
carat, a pointed-roof looking character, and the upper arrow, which has a line coming down
from the pointed top of the roof. An expression like 2*3 means two to the third power, that
is, 2 times 2 times 2. Locate the upper arrow symbol and verify that it works, using the
program



Getting Started 9

10 PRINT 2°5
you should get 32. Some older versions of BASIC use two asterisks in a row (**) to indicate
the power operation (exponentiation).

There is a hierarchy, shown below, that determines which operations are done first. At
the top of this hierarchy is the paired parentheses, (...). Whatever expression is inside will be
executed before that value is used within a larger expression. Next after the parentheses
comes exponentiation (the power operation), below that are the other arithmetic operations of
multiplication and division (next level down), and below these are addition and subtraction, on
the same level, one below multiplication and division.

For example,

20 PRINT 2*(1+43)

will print

16

because 1 is added to 3 before becoming the power of 2, whereas
20 PRINT 2*1+3

will print

5

because 2 is raised to the 1 power, and then added to 3.

Hierarchy of Arithmetic Operators

Done First

Level 1 () parentheses

Level 2 - exponentiation

Level 3 LI multiplication and division
Level 4 + - addition and subtraction

Level 5 left to right
Done last

For example, if you write
10 LET X=3*(4+5)

the machine will add the 4 and the 5 together, and then multiply the result by 3. In this case,



10 Getting Started

27 will be stored in location X, On the other hand, if you write

10 LET X=3*4+5

the machine will first multiply the 3 and 4 together (because multiplication is higher than
addition in the hierarchy) and then add the 5. In this case, 17 gets stored in X. If a number
variable is named somewhere in your program, it gets initialized to 0 before it is used. String
variables are initialized to the null string. The null string is the string with no characters,
written "" (two double quotes in a row).

It is good programming practice to initialize all variables yourself before they are used.
BASIC on some systems does not initialize variables. If you do not initialize the variables
yourself, you will get different answers each time the program is run. Furthermore, BASIC
programmers who go on to learn other languages, such as Pascal, will find it easier to adjust
to the necessity of initializing variables in the new language if they practice it in BASIC,

34 3¢ 3k 3k e s S 3k e 2 3k e e e e ke a4 8¢ e 346 sk abe 3k 3je 3 spe a3 e e e e ke ke ke 3k 3k sk e ok s 3k 3 K ke 3k ofe sk ok

Exercise 1.4.1 Put 4 squared plus 3 cubed into X. Then print "X= " followed by the value
of X.

Solution and Discussion:

Use the power operator (*) to get 4 squared and 3 cubed, and use the + sign to add them
together. In your PRINT statement, the first print item will be the literal "X = " and the
second print item will be the variable X. You can separate the two print items with a space, a
semicolon, or a comma. Try each of them and see what they do on your system.

10 REM PRINT 4 SQUARED PLUS 3 CUBED
20 LET X=4*2+13*3
30 PRINT "X=":X

3K 2k okl 2k e 3 0 afe 2 2 3 b ke 2k 2 e 3k e 3 o 3k 3 e 2 3k e 3 3 3K e Ak e 3 e 3 ok g e 3k 3 ok ok ke e o oK ke

Exercise 1.4.2 Write an arithmetic assignment statement that puts the sum of the first 7
integers, 1+24+3+4+5+6+7, into a variable called S. Then print S with a label in front that
says "SUM=",

Solution and discussion:

10 REM ADD 7 NUMBERS AND PRINT RESULT
20S=1424+3+4+5+6+7

30 PRINT "SUM=":§

The semicolon between "SUM="and $ tells the system not to add any blank space
between the equal sign and the first character of the printout of the contents of S. The
printout of a number always starts with one blank character, if positive, or a minus sign if



