B 5 Ly ETEE
%

- BIMEERRESRARIHSAD

- | 4 *
C++ 3EFIRiT
BFES5IEE
(2 ZhR #ZEPAR)
PROGRAMMING IN C++

Instructor’s Manual Adaptation
(Second Edition)

B Nell Dale
Chip Weems
Mark Headington

=

=h 5 L X H MR

Higher Education Press

e e L T T

CHIEF %1t

HFEIESE5IHE

(SRR ®EDRD
PROGRAMMING IN C++

Instructor’s Manual Adaptation

(Second Edition)

Nell Dale
Chip Weems
Mark Headington

B WS E R A

E=: 01-2003-0687 =

Programming in C++: Instructor’s Manual Adaptation, Second Edition
Nell Dale, Chip Weems, Mark Headington

ORIGINAL ENGLISH LANGUAGE EDITION PUBLISHED BY
Jones and Bartlett Publishers, Inc.
40 Tall Pine Drive
Sudbury, MA 01776

COPYRIGHT 2001
ALL RIGHTS RESERVED

BB ERS B (CIP) 8 i

C++ BIFRITB RS 5IEE/(E)BAKR(Dale,
N.), () BRIBE (Weems, C.), () BT Hi(He
adington, M.)% . —2 WROVENRR) . —dbs: B%EH
& kL, 2003.3

ISBN 7 - 04 - 012658 — 3

I1.¢... T.O®K..OR..QO%2... M.CiEE -
BEREIT - SR - HESERR - EXL
IV .TP312

o [R A B 4548 CIP %048 #% 7 (2003) 58 014601 5

HERZIT ®SSHEFHRL T B AR
it e AAEHRBEYMEESS S ®BEH
BBBI4RAD 100009 b b1l

& H 010 - 64014048

23 FERIEI R RATA
£ Rl LS EN R A BR 2 &

FF & 787x1092 1/16 hE KO2003FEIAE 1M
Ep ¥ 27.5 En MO2003 23 A 1 KEDE
* # 510 000 E #r 35.00 L(&HXR)

ABMART . R, BRAEHRERE, HRMGEBHEWTRRAR.

Tl

HIl

20 AR, UrENmBERRARENEERFRE RS REFR. B,
FH. BN ETL TRV, FENEHARGRE LR A, W T
FREGEFLNEHNLE, W FLERERTEENE R,

PN21 L, ARMEREWMAN WTO, REFVHEFE S EmMMA. &
EEEFLEAE 0 #ERRETAELE, E5XAEDEMY, BE50F. ;4
REZFEFME, THRAZE, BREEMNLBEEELE VK EFE %6
N, BREBEBATEEREERASHFEARE. 5l 2t B 4Mz BAFfo b A
FHM, EHFEGEREHTRIGERERTEHY, T HH A RIS,
B AR RBARAS RIS — T E A4,

Ak, BEREREBEERT ARG TR ER B R M5 #R 5
T, AMRETHLAER, —REHKT, £ ERNH4. B FHEF LR A
EERERRNAEMERANE N T, B RGN E, 2 —42) #8020 EZi
BHOCEMEHR, XEXMEBE T2 T E 0T, EFEALD) R REEH
FEHAGREL LR, HBENWEHZERRREENERARBTER N RS,
KERTENEREEREBRRMTN AT, TENBLEIRRES, 5SEXNRE
KE R Y,

RPEMA TR EAT R G EHTANBHRRNLEFNALT, HEREL
HEBRGEYGER. #5245, X KBES MM AT S RB SRR L,
SHTENMENEL KFHE W HEREZEHSTALT 6. £, John Wiley
A] B LR SR B AE BT R R0 Bl S 3 Silberschatz #4% #y 2 32 4k (3R 45
AOMEY, RBENEIRERH, BRTIREEHABUE HH. William Stallings
REERT TEXERTRWHE ERLEARZ I #HM, HEHSHHEMEBTE
EEMMEREEEDRPE N ENAEE TEBMYE, KT SR B R4
WHAZME. BXPE¥H Jawei Han 4 W (HESHEY SRR T LA T2
BXMFE, mEHF BB Thomas Cormen 4 B T4 B8, F4bth T At 1,

UFEHFRERFALRLER CEEIRY), EEH T 1L FHEHFEZE T 2001 4 1K
T % ZhR. B RIfE# T £ Massachusetts & ¥ By James Kurose #3%, ¥ & £E = ff
EREE 10 RKBAEAFR AL HF L, HeERN GHEFNFEY BRE, U
HEERFH. ARAHTEZIRY, EXHBRENAHEMENFTE, BEHTENK
HUMT KERERNTHE, XBEFIHAEMEILTRENE. 2445, £H#MREKF
2

HEROALEAMESNERERRES R ITH, LEEHAFEREEHAR
BERERSLNRE. BNESHFHRATES, FMRERESHH G HE
R FAHM, TELETFE RS L FRE TR, LS HHAANES
ENEREAMEY, L) AFFforsfEER, PENKFTHE KR, SEEK
NEFEAEREEREDY ARATRERERA.

ESHHMYE R, RNERBFH AR, FE¥ IEIEHOHYEET
HEF R, REOREMAKFE, FRNGEF M EAZTKE L, EEREX
BES L, EERFENGTFES LEARAH R FH.

HR, HEHEELE S FIERE T ERRKEFROER LR, X481
RIBREERNEFRAANEERHEZ —, THBEKHFRELR TEREAER
FENGEHABRREALT, 5B L GEREFLLLEESFE, WEASIELIT
bk EERHFEREN, BEFEAN LR RGEERBER, REREERG #EK
MFRHF.

BMNAFEBER X LR, gEREHHRE, YREFFR-AMREREANEERK
AAL, REREKUBASGERES L, RABRESLLRERRE, mikk
FERGEE AR, AOEHENEREFHERAILE.

HERGEHT &
OO0 &E=ZH

PREFACE

This Instructor's Guide has been developed to assist both instructors who are teaching the CS1
or C101 course with C++ for the first time and those who have taught the course previously.
We hope that even the most experienced of instructors will find something new and useful in
the material presented here.

RGANIZATION OF THI, IDE

Each chapter of the Instructor's Guide corresponds to one chapter in the text. Every chapter is
organized into seven sections:

Chapter Goals

Chapter Outline

General Discussion

The Hard Parts

Exercise Answers

Exam Questions

Answers to Exam Questions

NowkEwDbD =

Chapter Goals
The learning objectives listed at the beginning of each chapter of the text are repeated here. (In

the text, for each goal there is a corresponding Quick Check question in the end-of-chapter
exercises.)

Chapter Outline

An outline of each chapter's contents is provided to aid in planning lectures.

General Discussion

This section focuses on the most important new concepts that students must understand in
order to complete the chapter successfully.

The Hard Parts

In each chapter, certain topics or details routinely cause problems for students. Based on
classroom experience, this section identifies the problem areas and offers techniques, tips,
analogies, and anecdotes that address the difficult material. The Hard Parts section gives us a
chance to share these suggestions with you, for you to use or ignore as you see fit.

2 Preface

Exercise Answers

The text contains answers to roughly half of the Exam Preparation and Programming
Warm-Up exercises. This section contains the rest of the answers.

Exam Questions

This Instructor's Guide provides over 800 test questions, averaging about 55 per chapter. The
questions are objective in nature and are organized into three formats: True/False, Multiple
Choice, and Fill-In. An electronic version of the questions and answers, along with other
Instructor’s Guide content, is available on an Instructor’s Toolkit CD-ROM upon request from
your Jones and Bartlett representative.

Answers to Exam Questions

The final section of each chapter is an answer key for the exam questions.

COURSE ORGANIZATION

Programming in C++, Second Edition is appropriate as a text for a self-study course. More
typical, however, is a lecture-oriented course structure. All but four of the chapters (6, 11, 12,
and 14) may be covered in one week of either three 60-minute lectures or four 45-minute
lectures. (This guide assumes the former but is easily adapted to the latter.)

In a lecture course where the group is large, it is desirable to have a lab or discussion
section associated with the course. The class should be divided into lab groups consisting of
roughly 15 to 25 students. Each lab section typically is administered by a teaching assistant
(T.A.) who leads the discussion. Depending on the number of lab sections, more than one T.A.
may be required. If possible, it's best to have each T.A. be responsible for no more than three
lab sections. With a very large class, the T.A. is usually the students’ primary contact for
technical assistance and course administration. Although lab sections may have a purely
lecture- or discussion-oriented format, there are great benefits to be reaped if machine access is
available in the Iab room. This permits the students to run through some hands-on exercises,
with the T.A. present to answer questions and offer advice. Either way, it is important that
students be given the opportunity to ask questions and discuss problems in a small-group
environment. In a lecture course where the class is small, it may be desirable to schedule an
extra period to allow time for this type of interaction to take place.

Below is a suggested time frame for each chapter of the text:

Preface 3

Number Number Number
Chapter of weeks Chapter of weeks Chapter of weeks
1 1 6 2 11 1.5
2 1 7 1 12 1.5
3 1 8 1 13 !
4 1 9 0.5 14 1.5
5 1 10 1 15 1

Coverage of material in the text will depend on the type of system employed at a particular
school. At a semester school, for example, a term is roughly 16 weeks in length. This allows
coverage of Chapters 1 through 13 (Array-Based Lists). Alternatively, you could quicken the
pace through the following chapters: 6, 10 (skimming floating point representation), 11
(skimming structs), and 12 (skimming multidimensional arrays). Doing so would allow
coverage of Chapter 14 (Object-Oriented Software Development).

In a school that operates on a quarter system, each quarter is about 11 weeks. Instructors
can cover Chapters 1 through 9 (Additional Control Structures) in the first quarter and, after
picking up with a review of Chapter 9, finish the rest of the book in the second quarter.

READERS’ COMMENTS

We greatly appreciate the feedback that we receive from instructors, teaching assistants, and
students. We're already planning the next edition of the text and welcome your comments,
whether favorable or unfavorable. Our goal, after all, is to make this the best Programming
and Problem Solving with C++ that we possibly can.

0z
TEC

Preface

Chapter 1

Chapter 2

Chapter 3
Chapter 4

Chapter 5

Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Chapter 15

CONTENTS

.. 1
Overview of Programming and Problem Solving 1
C++ Syntax and Semantics, and the Program
Development PrOCESScc.oovcvvecrveeeeseeseeoeeseooeeeoeoeoeoseoo 10
Numeric Types, Expressions, and Qutputoooooooooooeoooo.. 31
Program Input and the Software Design Process ... 59
Conditions, Logical Expressions,
and Selection Control Structuresooo..coeoovvvvvreeoooooveooo 85
LOOPINGoooievirreeie e 117
FUNCHONSoooveveceeiinnnceeee oo 148
Scope, Lifetime, and More on Functions ... 184
Additional Control Structureso..ccooomomvvevcerommrro 215
Simple Data Types: Built-In and User-Defined ... 239
Structured Types, Data Abstraction, and Classes ... 264
ATTAYS ..ot eee s 305
Array-Based LiStSccooovvuorivmuoreeeeceee oo 361
Object-Oriented Software Developmentoo.oooooooooo. 385
RECUTSION ...oocooeerctiiirnecei e 411

Chapter 1 Overview of Programming and Problem Solving |

Chapter 1

OVERVIEW OF PROGRAMMING
AND PROBLEM SOLVING

CHAPTER GOALS

CHAPTER OUTLINE

To understand what a computer program is.

To be able to list the basic stages involved in writing a computer program.

To understand what an algorithm is.

To learn what a high-level programming language is.

To be able to describe what a compiler is and what it does.

To understand the compilation and execution processes.

To learn what the major components of a computer are and how they work together.
To be able to distinguish between hardware and software.

To learn about some of the basic ethical issues confronting computing professionals.

To be able to choose an appropriate problem-solving method for developing an algorithmic
solution to a problem.

I. Overview of Programming
A. What is Programming?
B. How Do We Write a Program?
II. What is a Programming Language?
[II. What Is a Computer?
IV. Ethics and Responsibilities in the Computing Profession
A. Software Piracy
B. Privacy of Data
C. Use of Computer Resources
D. Software Engineering
V. Problem-Solving Techniques
Ask Questions
Look for Things That Are Familiar
Solve by Analogy
Means-Ends Analysis
Divide and Conquer
The Building-Block Approach
Merging Solutions
Mental Blocks: The Fear of Starting

TOMmoOwy

2

Chapter 1 Overview of Programming and Problem Solving

I. Algorithmic Problem Solving
VI. Summary

GENERAL DISCUSSION

In the first four chapters we introduce the basic concepts and terminology of computer
science and computer programming. This may seem like a slow-paced introduction, but we
have found that if we take more time at the beginning to ensure that students comprehend the
basics, it's possible to move much more quickly in later chapters. The net result is that more
material is covered overall.

This chapter introduces students to the terminology of computers, the concepts and
methodologies of problem solving and algorithms, the essentials of how computers work, and
some ethical issues in computer science.

The most important concept in this chapter is the algorithm: a step-by-step procedure for
solving a problem in a finite amount of time. Stress that algorithms encompass far more than
computer programs. The students should understand that they are learning to write algorithms
and that the computer is simply a fast and flexible tool for implementing algorithms.

The material in this chapter is usually covered in one week. The first lecture typically
covers course administration, basic terminology, how to get access to machines, and so on. In
the second lecture, you can discuss algorithms, implementations, compilation, execution, and
computer organization. The third lecture introduces the different problem-solving techniques
and ethical issues in computer science.

THE HARD PARTS

Source Programs, Object Programs, and the Compiler

It is important that students understand the concept of high-level language versus machine
language and the role of the compiler in bridging the gap. Students who know only BASIC
may have used an interpreter rather than a compiler. The process of translating the entire
source program into object code instead of translating and executing one instruction at a time
will be new to them. You should tie the fundamentals of the operating system and computer
architecture into this discussion so that the students can see how the whole system works
together to compile and execute a program.

Because the students won't be writing and running their first C++ program until Chapter 2,
the discussion of compilation and execution is bound to be somewhat abstract to them. You
may want to tell the students that the compilation process will become clearer to them in the
next chapter and that they should refer back to Chapter 1 at that time.

Algorithms and Problem Solving

Students must be able to look at a simple problem and see where to begin to solve it. It will
take them years to fully develop this skill, but some initial examples and practice will give
them the confidence to keep going. The key concept here is to realize that solutions to
programming problems involve writing out the steps in computing the solution, rather than
computing the solution itself. Many students will not fully appreciate the difference until the
idea of input is introduced in Chapter 4.

Chapter I Overview of Programming and Problem Solving 3

From the start, it should be made clear that problem solving and algorithm design are
techniques that apply to many areas other than programming. A good way to demonstrate this
is to describe some algorithms that are encountered in everyday life. These might include a
musical score, instructions for assembling a stereo system, instructions for knitting a sweater,
or a recipe for a chocolate cake. Each algorithm may be characterized as having an author, a
processor, and something that is being processed or produced. In the case of a musical score,
the author is a composer, the processor is one or more musicians, and the thing being
processed or produced is sound. You then can introduce programs as just another type of
algorithm—their authors are programmers, the processor is a computer, and the thing being
processed or produced is data. You should point out to the students that they will be learning
how to be authors of programs in much the same way that musicians learn how to be
composers of music.

Each of the sample algorithms also has its own language. The stereo assembly instructions
use jargon, the musical score uses standard musical notation, the knitting instructions use a
special notation (KIP2 means knit one, purl two), and the cake recipe uses various
abbreviations and special terms. These examples lead naturally into a discussion of a
programming language as just another language for expressing an algorithm. Students will
feel much more comfortable with the idea of learning a programming language if they can
equate the experience with learning to read music or learning knitting instructions.

If possible, you should lead students through a discussion of a nonprogramming problem
for which an algorithmic solution can be developed. For example, they could develop an
unambiguous set of instructions (an algorithm) for getting to the nearest fast-food restaurant.
If this exercise is done in a small-group setting, you can call on students to supply the steps
necessary to perform the task. You should make an effort to point out any ambiguous
instructions, so that the students begin to get an appreciation for the precision with which they
will be required to specify the steps in their programs.

EXAM QUESTIONS
True/False
1. There is only one unique general solution (algorithm) for a given problem.
2. All computer programs are algorithms.
3. All algorithms can be implemented as computer programs.
4. In a computer, data is represented electronically by pulses of electricity.
5. RAM stands for random access memory.
6. The term software refers to the physical components of a computer.
7. The compiler is a program that translates a high-level language program into

machine code.

4 Chapter | Overview of Programming and Problem Solving

8. The two components of the central processing unit (CPU) are the arithmetic/logic
unit and the control unit.

9. Magnetic tape drives and floppy disk drives are examples of auxiliary (secondary)
storage devices.

10. In the "solve by analogy" technique, you solve a problem by modifying the solution
to a similar problem.

Multiple Choice

11. Which one of the following is not one of the three major phases in the life cycle of a
computer program?
a. the problem-solving phase
b. the management phase
c. the implementation phase
d. the maintenance phase

12. Which of the following is the first step in the problem-solving phase of a computer
program's life cycle?

Translate the general solution into code.

Write a general solution for the problem.

Test the general solution.

Analyze the problem.

Test the solution on a computer.

oap o

13. Which of the following is the second step in the problem-solving phase of a
computer program's life cycle?

Translate the general solution into code.

Write a general solution for the problem.

Test the general solution.

Analyze the problem.

Test the solution on a computer.

paooe

14. Which of the following is the first step in the implementation phase of a computer
program's life cycle?

a. Translate the general solution into code.
b. Write a general solution for the problem.
c. Test the general solution.
d. Analyze the problem.
e. Test the solution on a computer.
15. Which of the following is the second step in the implementation phase of a computer

program's life cycle?

a. Translate the general solution into code.
b. Write a general solution for the problem.
c. Test the general solution.

d. Analyze the problem.

16.

17.

18.

19.

20.

21.

Chapter 1 Overview of Programming and Problem Solving 5
e. Test the solution on a computer.
The following series of steps is not an algorithm. How would you correct it?
Putting on a Pair of Athletic Shoes
Step 1. Put on one shoe.
Step 2. Tie the laces.
Step 3. Repeat.
Exchange steps 1 and 2.
Exchange steps 2 and 3.

Change step 3 to "Repeat once."
Change step 1 to "Put on both shoes."

oo

Inside a computer, a single character such as the letter A usually is represented by a:
a. bit

b. byte
¢. nibble
d. word

Which of the following translates a program written in a high-level language into
machine code?

a. amouse

b. acompiler

C. an operating system

d. aneditor

Which of the following most closely resembles human language?
a. ahigh-level language

b. amachine language

¢. aRAM

Which of the following terms describes the repetition of statements (instructions)
while certain conditions are met?

a. sequence

b. selection

¢. looping

d. subprogram

Which of the following terms describes the execution of different statements
(instructions) depending on certain conditions?

a. sequence
b. selection

c. looping

d. subprogram

6

Chapter 1 Overview of Programming and Problem Solving

22.

23.

24.

25.

26.

27.

28.

Which of the following terms describes the execution of a series of statements
(instructions) one after another?

a. sequence

b. selection

c. looping

d. subprogram

Of the following components of a computer, which one stores data and instructions?
input device

output device

arithmetic/logic unit

control unit

memory unit

oaeoe

Of the following components of a computer, which one performs computations?
input device

output device

arithmetic/logic unit

control unit

memory unit

oo o

Of the following components of a computer, which one assures that program
instructions are executed in the proper sequence?

input device

output device

arithmetic/logic unit

control unit

memory unit

0 a0 oe

Of the following components of a computer, which one fetches the next instruction
from RAM during program execution?

input device

auxiliary storage device

arithmetic/logic unit

control unit

memory unit

oo o

Of the following components of a computer, which one presents the results of the
processing to the outside world?

input device

output device

arithmetic/logic unit

control unit

memory unit

I

Which problem-solving technique involves the breaking up of a large problem into
smaller units that are easier to handle?
a. divide and conquer

Chapter I Overview of Programming and Problem Solving 7

b. means-ends analysis
¢. solving by analogy
d. the building-block approach
e. merging solutions
29. Which problem-solving technique involves integrating existing solutions on a step-
by-step basis into a complete solution?
a. divide and conquer
b. means-ends analysis
c. solving by analogy
d. the building-block approach
€. merging solutions
30. Which problem-solving technique involves defining the beginning and ending states
of a problem, then comparing different methods for getting between the states?
a. divide and conquer
b. means-ends analysis
c. solving by analogy
d. the building-block approach
e. merging solutions
31. Which problem-solving technique involves recognizing that the problem you are
working on is similar to one that you have worked on before?
a. divide and conquer
b. means-ends analysis
¢. solving by analogy
d. the building-block approach
e. merging solutions
Fill-in
32, A general solution, or algorithm, is written during the
phase of a computer program's life cycle.
33. Coding of an algorithm takes place during the phase of a
computer program's life cycle.
34. Modifications are made to an existing computer program during the
phase of the program’s life cycle.
35. A(n) is a step-by-step procedure for solving a problem in a
finite amount of time.
36. A(n) is a set of rules, symbols, and special words used to
construct a computer program.
37. is the written text and comments that make a program

easier for others to understand, use, and modify.

8

Chapter 1 Overview of Programming and Problem Solving

38.

39.

40.

41.

42.

43,

44,

45.

46.

47,

48.

49.

50.

is information that has been put into a form that a

computer can use.

A single binary digit (that is, a single 1 or 0) is called a(n)

A sequence of 8 bits is known as a(n)

is the language made up of binary-coded instructions that
are used directly by the computer.

A(n) is a program that translates a high-level language
program into machine code.

A program written in a high-level programming language is called the

program.

A(n) is an input, output, or auxiliary storage device
attached to a computer.

The program is the machine language version of a source
program.

The is the set of programs that manages all of a computer's
resources.

A(n) is a shared boundary that allows independent systems

to meet and act on or communicate with each other.

In the " " problem-solving technique, you recognize any
subtasks that have been solved before and use those as solutions to part of the
problem.

In the " " problem-solving technique, you define the
beginning and ending states of the problem, then compare different methods for
getting between them.

In the " " problem-solving technique, you break the problem
up into smaller pieces that have been solved before, then tie the pieces together into
a complete solution.

