
Neurobiology of Brain Disorders

Biological Basis of Neurological and Psychiatric Disorders

Edited by

Michael J. Zigmond, Lewis P. Rowland, and Joseph T. Coyle

NEUROBIOLOGY OF BRAIN DISORDERS

BIOLOGICAL BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISORDERS

Edited by

MICHAEL J. ZIGMOND

Departments of Neurology, Neurobiology, and Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

LEWIS P. ROWLAND

常州大字山书训 藏书 章 Harve

logical Institute, Columbia University Medical Center, New York, USA

JOSEPH T. COYLE

vard Medical School, McLean Hospital, Belmont, Massachusetts, USA

Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK

Copyright © 2015 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-398270-4

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

For information on all Academic Press publications visit our website at http://store.elsevier.com/

Typeset by TNQ Books and Journals www.tnq.co.in

Printed in the United States of America Transferred to Digital Printing, 2015

NEUROBIOLOGY OF BRAIN DISORDERS

Dedication

To our students and patients who, over the years, have motivated us to produce this book

and

To Nancy Wexler, whose commitment to research and education about brain disorders has been an inspiration to each of us.

Preface

Interest in understanding the basis of neurological and psychiatric disorders is thousands of years old. People of China and India, as well as the Egyptians and Greeks, all had ideas about how the brain worked and what caused the occasional functional abnormalities that they observed. Moreover, they often developed interventions to relieve symptoms, if not treat the disease. Indeed, the origins of neuroscience probably go back even farther. For example, trephination of the skull is thought to have been practiced as long as 7000 years ago and may have been designed to release evil spirits believed to be the cause of brain disorders. Since then, some of the ancient treatments have been found to be quite effective and have even served as the basis for much more recent interventions. However, the modern era of inquiry into the neurobiological basis of brain disorders did not begin until the nineteenth century. Several milestones along the path of that inquiry can be identified; here we mention just a few.

Rauwolfia serpentina is a shrub from which the people of India have been making a medicinal tea for thousands of years.^{1,2} Among the many conditions for which it was used was "moon disease", which we now recognize as psychosis. In the early 1950s it was determined that most of the tranquilizing effects of the plant extracts resulted from a compound that was named reserpine. Over the next decade, Arvid Carlsson and colleagues, working first at the US National Institutes of Health, then at the University of Lund, and finally at the University of Göteborg, Sweden, demonstrated that the effects of this natural product were due to its depletion of the neurotransmitter dopamine from the striatum, as described in the Nobel Lecture by Arvid Carlsson.3 This led to several key observations, including the discovery by Oleh Hornykiewicz in Vienna that Parkinson disease (PD) was associated with a loss of striatal dopamine and that many of the motor symptoms of PD could be reversed by administration of the dopamine precursor, L-dopa (see Chapter 19).3,4

The use of reserpine as a treatment for psychosis, together with the discovery of chlorpromazine for the treatment of schizophrenia and the realization in 1963 that it, too, acted by reducing dopaminergic transmission,⁵ led to the focus on reducing dopaminergic transmission to treat schizophrenia (see Chapter 39). Likewise, the observation that a loss of dopamine was associated

with PD, and that the behavior of reserpinized animals and patients with PD could both be improved by L-dopa, resulted in the use of drugs that activate dopamine receptors in the treatment of PD. This sequence of events, conducted over a period of less than 10 years, is a landmark in the use of behavioral and neurochemical approaches for studying the nervous system, and was largely responsible for initiating the twin fields of neuropharmacology and biological psychiatry.

There have been many other such moments in the emergence of biological approaches to neurological and psychiatric disorders. For example, Ernst Wilhelm von Brücke and colleagues, as well as their students (e.g. Sigmund Freud), working in Austria during the latter half of the nineteenth century, were among the first to apply laboratory methods to the study of the nervous system and to suggest that behavior could be understood through an understanding of biological events. The introduction of electrophysiology into neuroscience can be traced as far back as the seventeenth century to the work of Jan Swammerdam in Holland, although it is Luigi Galvani, working in Italy in the nineteenth century using nerve-muscle preparations, who is usually credited with initiating electrophysiology as an approach for understanding how the nervous system functions.6 Neuropathology was introduced by Paul Oscar Blocq and Georges Marinesco in the late nineteenth century in Paris. During a postmortem examination, they found a tumor in the contralateral substantia nigra of a patient who had exhibited the symptoms of PD, as reviewed by Catala and Poirier. In short, many of the principal tools for understanding the neurobiology of brain disorders neuropathology, histochemistry, electrophysiology, biochemistry, and behavior - gradually emerged over the past 250 years as a result of investigators working in many different areas of the world. In the 1970s, two more approaches were added, molecular neurobiology and brain imaging. (For an excellent treatise on the history of neuroscience, see Origins of Neuroscience: A History of Explorations into Brain Function, by Stanley Finger,⁸ and excellent articles in *The Journal of the History* of Neuroscience. For a timeline and an extensive bibliography of the history of neuroscience, see also the website of Eric Chudler at the University of Washington.⁹ Additional material can be found on the website of the Society for Neuroscience. 10)

xiv PREFACE

Our decision to assist in the teaching of the neuroscience of brain disorders by preparing this textbook began to take shape over three decades ago. The Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts (USA) twice played a role in the origins of the project, as it has in the development of neuroscience more generally. 11,12 The first event occurred on a rainy weekend afternoon in 1979, when Edward Kravitz invited two individuals to speak on the neurobiology course that he was co-teaching there. They were Nancy Wexler, then a program officer at the US National Institute of Neurological Diseases and Stroke, and Marjorie Guthrie, the widow of Woody Guthrie. Marjorie spoke movingly about how Woody's Huntington disease affected him and their entire family; Nancy also commented on the disease. After the presentations, Marjorie, Nancy (who was to become the president of the Huntington's Disease Foundation and whose family has also suffered from that condition), Ed, Michael Zigmond, and several others on the course went to "The Captain Kidd", a popular hangout in Woods Hole, to continue the discussion. The group immediately began to talk about how moving the presentations by Marjorie and Nancy had been and how valuable it would be to expose others in the field to such experiences. Ed took this idea and ran with it, obtaining funding from the National Institutes of Health to underwrite the "Neurobiology of Disease" workshop now held each year just before the annual meeting of the Society for Neuroscience.

The second event was a six-day workshop for faculty on teaching about the neurobiology of disease in which the three editors of the present textbook (and many others) taught during August 2011. The objective was to provide the participants with information and instructional methods that would allow them to go back to their home institutions and mount, or substantially improve, a course on the neurobiology of disorders. Much of the impetus for moving from courses to a textbook - and a few of the book's authors (Ann McKee, Robert Brown) and consultants (Gerald Fischbach, Donald Price) - arose from that workshop. The hope was - and remains - that through this book still others will be able to develop courses on the neurobiology of disease. This textbook is not complete; there are separate chapters on the role of inflammation but not mitochondrial dysfunction, on PD but not Tourette syndrome, on depression but not anxiety, on traumatic brain injury, but not brain tumors. These and several other topics must await a second edition.

But this raises the question: Why this abiding interest in helping to stimulate training in the neurobiology of disease? It is not because we believe that basic research in this field is less important than research that more directly confronts disease. On the contrary, virtually all of our current understanding of the biological basis of brain disorders stems from discoveries made in basic science laboratories, as the examples given at the beginning of this Preface indicate (see also the excellent series of pamphlets produced by the Society for Neuroscience, "Research and Discoveries"13). However, knowing more about disorders of the nervous system can motivate researchers to work even harder, and who among us does not want their work to eventually make a difference in the lives of others? Moreover, we firmly believe in the aphorism of Louis Pasteur that "chance favors the prepared mind". We hope this textbook will aid in that preparation.

> Michael J. Zigmond, PhD Lewis P. Rowland, MD Joseph T. Coyle, MD

References

- Sen G, Bose K. Rauwolfia serpentina, a new Indian drug for insanity and hypertension. Indian Med World. 1931;21:194–201.
- Lele RD. Beyond reverse pharmacology: mechanism-based screening of Ayurvedic drugs. Ayurveda Integr Med. 2010;1: 257–65.
- Carlsson A. A half-century of neurotransmitter research: impact on neurology and psychiatry (Nobel Lecture). *Chembiochem*. 2001; 2:484–93. For a video of this lecture, see http://www.nobelprize.org/ nobel_prizes/medicine/laureates/2000/carlsson-lecture.html.
- Hornykiewicz O. The discovery of dopamine deficiency in the parkinsonian brain. J Neural Transm Suppl. 2006;70:9–15.
- Baumeister AA. The chlorpromazine enigma. J Hist Neurosci. 2013;22:14–29.
- Verkhratsky A, Krishtal OA, Petersen OH. From Galvani to patch clamp: the development of electrophysiology. *Pflugers Arch*. 2006;453:233–47.
- Catala M, Poirier J. Georges Marinesco (1863–1938): neurologist, neurohistologist and neuropathologist. Rom J Morphol Embryol. 2012;53:869–77.
- Finger S. Origins of Neuroscience: A History of Explorations into Brain Function. Oxford: Oxford University Press; 2001.
- Chudler E. Milestones in neuroscience research. http://faculty.wa shington.edu/chudler/hist.html
- Society for Neuroscience. History of neuroscience. http://www.sfn.org/About/History-of-Neuroscience/History-Resources.
- 11. Zottoli SJ. How the early voltage clamp studies of José del Castillo inform "modern" neuroscience. *Neuroscientist*. 2012;18:415–21.
- Maienschein J. Neurobiology a century ago at the Marine Biological Laboratory, Woods Hole. *Trends Neurosci*. 1990;13:399–403.
- Society for Neuroscience. The research and discoveries series. www.brainfacts.org.

Acknowledgments

This textbook has been a long time in gestation. Some time around 2005, Michael Zigmond was approached by Johannes Menzel, then at the Academic Press division of Elsevier, with a proposal to organize a textbook such as this one. Donald Price was soon brought into the conversations and over the next few years played a major role in shaping the project, providing suggestions for both topics and authors. Gerald Fischbach was also a source of excellent advice. In the end, we three agreed to carry the project through to its conclusion.

Although our initial editor at Elsevier, Susan Lee, helped to get the project started, it was Mica Haley and editorial project manager April Farr who made it happen – being amazingly patient with us and the authors as one deadline after another came and went. And, in addition to being patient, Mica provided invaluable suggestions at virtually every step along the way.

Working with Michael at the University of Pittsburgh, Susan Giegel and later Beth Fischer provided essential administrative assistance. Finally, we greatly appreciate the help of all those involved in the production of this textbook, including our copy editor, Charlotte Pover and project manager Chris Wortley.

The royalties generated from this book will be used primarily to support the purchase and distribution of this textbook to trainees in developing countries.

No grant support was specifically obtained for this project. However, our institutions, the University of Pittsburgh, Harvard Medical School/McLean Hospital, and Columbia University provided us with the facilities within which to carry out the work and, in some cases, support for our salaries.

List of Contributors

- **Stanley H. Appel** Department of Neurology, Methodist Neurological Institute, Houston, Texas, USA
- Miroslav "Misha" Backonja Departments of Neurology, Anesthesiology, and Rehabilitation Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; CRILifetree, Salt Lake City, Utah, USA
- Zinzi D. Bailey Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
- **David R. Beers** Department of Neurology, Methodist Neurological Institute, Houston, Texas, USA
- **Tommy K. Begay** Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- Anna Berti Psychology Department, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
- Marina Boido Department of Neuroscience, Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- **Maura Boldrini** Columbia University, New York State Psychiatric Institute, New York, USA
- David Borsook PAIN Group, Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- R.H. Brown Jr. Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Rami Burstein Department of Anesthesia, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Vera Joanna Burton The Johns Hopkins University/ Kennedy Krieger Institute Residency in Neurodevelopmental Disabilities, Baltimore, Maryland, USA
- Eduardo R. Butelman Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
- Louis R. Caplan Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- F. Xavier Castellanos NYU Child Study Center, NYU Langone Medical Center, New York, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- **Elena Cattaneo** Department of Biosciences, University of Milan, Italy
- Paula R. Clemens Neurology Service, Department of Veterans Affairs, University of Pittsburgh, Pennsylvania, USA, and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

- Samuele Cortese Child Neuropsychiatry Unit, Life and Reproduction Sciences Department, Verona University, Verona, Italy; NYU Child Study Center, NYU Langone Medical Center, New York, USA
- Chiara Cossetti Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust–MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Joseph T. Coyle Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Daniel H. Daneshvar Center for the Study of Traumatic Encephalopathy, Alzheimer's Disease Center, Department of Neurology
- Mahlon R. DeLong Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA
- **Eva L. Feldman** Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- **Francesca Garbarini** Psychology Department, University of Turin, Turin, Italy
- Thomas Gasser Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
- Charles F. Gillespie Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Michael S. Gold Pittsburgh Center for Pain Research, Department of Anesthesiology; Center of Neuroscience; Departments of Neurobiology and Medicine; Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh
- Mary Lee Gregory The Johns Hopkins University/Kennedy Krieger Institute Residency in Neurodevelopmental Disabilities, Baltimore, Maryland, USA
- **Heinz Grunze** Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- Randi Hagerman Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Department of Pediatrics, University of California – Davis, Sacramento, California, USA
- James C. Harris Psychiatry and Behavioral Sciences, Pediatrics, Mental Health, and History of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

- Norman J. Haughey Department of Neurology, Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Judy Illes National Core for Neuroethics, Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
- Raffaele Iorio Department of Laboratory Medicine and Pathology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
- James W. Ironside National CJD Research & Surveillance Unit, Western General Hospital, Edinburgh, UK
- **Henry J. Kaminski** Department of Neurology, George Washington University, Washington, DC, USA
- Charlotte Kilstrup-Nielsen Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio, Italy
- **Bhumsoo Kim** Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Nastassja Koen Department of Psychiatry, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
- Glenn T. Konopaske Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Birgitte Rahbek Kornum Molecular Sleep Laboratory, Department of Diagnostics and Danish Center for Sleep Medicine, Copenhagen University Hospital Glostrup, Glostrup, Denmark
- Mary Jeanne Kreek Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
- Krister Kristensson Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- John F. Kurtzke VA Multiple Sclerosis Center of Excellence— East, Georgetown University School of Medicine, Department of Veterans Affairs Medical Center Neurology Service, Washington, DC, USA
- Linda L. Kusner Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
- Nicoletta Landsberger Laboratory of Genetic and Epigenetic Control of Gene Expression, Department of Theoretical and Applied Sciences, Division of Biomedical Research, University of Insubria, Busto Arsizio, Italy; San Raffaele Rett Research Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- **Tong Li** Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Paweł P. Liberski Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
- Jennifer L. Lyons Department of Neurology, Division of Neurological Infections, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Nasim Maleki PAIN Group, Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA

- Giulia Mallucci Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust–MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- J. John Mann Columbia University, New York State Psychiatric Institute, New York, USA
- Justin C. McArthur Department of Neurology, Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bruce S. McEwen Laboratory of Neuroendocrinology, The Rockefeller University, New York, USA
- Ann C. McKee Center for the Study of Traumatic Encephalopathy, Alzheimer's Disease Center, Department of Neurology, Department of Pathology, Boston University School of Medicine, Boston, Massachusetts, USA, VA Boston HealthCare System, Boston, Massachusetts, USA
- **Guy McKhann** Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland, USA
- **Tatiana Melnikova** Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Emmanuel Mignot Stanford Center for Sleep Sciences, Stanford University School of Medicine, Palo Alto, California, USA
- Andrew H. Miller Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- William C. Mobley Department of Neurosciences, University of California San Diego, La Jolla, California, USA
- Marco Neppi-Modona Psychology Department, University of Turin, Turin, Italy; Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy
- Orna O'Toole Department of Laboratory Medicine and Pathology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
- Matthew P. Parsons Department of Psychiatry, Brain Research Centre, University of British Columbia, Canada
- O.M. Peters Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- **Roberto Picetti** Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
- Sean J. Pittock Department of Laboratory Medicine and Pathology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA; Department of Neurology, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
- Stefano Pluchino Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust– MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- **Peter Pressman** Memory and Aging Center, University of California, San Francisco, California, USA

- Donald L. Price Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Charles L. Raison Department of Psychiatry, College of Medicine, University of Arizona, Tucson, Arizona, USA; Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, USA
- **Lynn A. Raymond** Department of Psychiatry, Brain Research Centre, University of British Columbia, Canada
- **Brian Reed** Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
- **Peter B. Reiner** National Core for Neuroethics, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
- Kerry J. Ressler Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA; Yerkes National Primate Research Center, Atlanta, Georgia, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Graham W. Rook Centre for Clinical Microbiology,
 Department of Infection, University College London,
 London, UK
- Howard J. Rosen Memory and Aging Center, University of California, San Francisco, California, USA
- **Lewis P. Rowland** Neurological Institute, Columbia University Medical Center, New York, USA
- **Aarti Ruparelia** Department of Neurosciences, University of California San Diego, La Jolla, California, USA
- Mario A. Saporta Department of Neurology, Universidade Federal Fluminense, Rio de Janeiro, Brazil
- Alena V. Savonenko Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Julia Schaeffer Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust–MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
- Helen E. Scharfman Departments of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, New York, USA; The Nathan Kline Institute, Dementia Research, Orangeburg, New York, USA
- Bruce K. Shapiro The Johns Hopkins University/Kennedy Krieger Institute Residency in Neurodevelopmental Disabilities, Baltimore, Maryland, USA
- Michael E. Shy Department of Neurology, University of Iowa, Iowa City, Iowa, USA

- **Roger P. Simon** The Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
- Catrina Sims-Robinson Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Dan J. Stein Department of Psychiatry, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
- Scott M. Summers Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Department of Psychiatry and Behavioral Sciences, University of California-Davis, Sacramento, California, USA
- Kiran T. Thakur Department of Neurology, Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Luis B. Tovar-y-Romo Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico
- Arshya Vahabzadeh Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Alessandro Vercelli Department of Neuroscience, Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Mitchell T. Wallin VA Multiple Sclerosis Center of Excellence–East, Georgetown University School of Medicine, Department of Veterans Affairs Medical Center Neurology Service, Washington, DC, USA
- Thomas Wichmann Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA; Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Clayton A. Wiley Division of Neuropathology, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
- David R. Williams Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
- Philip C. Wong Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Vadim Yuferov Laboratory on the Biology of Addictive Diseases, The Rockefeller University, New York, USA
- Weihua Zhao Department of Neurology, Methodist Neurological Institute, Houston, Texas, USA
- Michael J. Zigmond Departments of Neurology, Neurobiology, and Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Saša A. Živković Neurology Service, Department of Veterans Affairs, University of Pittsburgh, Pennsylvania, USA, and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

Contents

Preface xiii
Acknowledgments xv
List of Contributors xvii

1. An Introduction: A Clinical Neuroscientist and Disorders of the Brain

GUY McKHANN

Introduction 1 Localization of Lesions 2 Imaging 2 Selective Vulnerability of Neuronal Populations 2 Recovery After Injury 3 Stem Cells in Recovery 4 Brain Transplants 5 Neurology as a Therapeutic Field 5 Animal Models of Human Disease 6 Development of New Drugs 6 Clinical Trials 7 Trials in Alzheimer Disease 7 Biomarkers of Disease 8 Psychiatric Disease 9 Genetics of Neurological and Psychiatric Disorders 9 Temperament and Disease 10 Conclusion 10 References 11

I

DEVELOPMENTAL DISORDERS

2. Introduction

AARTI RUPARELIA, WILLIAM C. MOBLEY

Developmental Disabilities and Metabolic Disorders

MARY LEE GREGORY, VERA JOANNA BURTON, BRUCE K. SHAPIRO

Introduction 19
Brain Development 19
Functional Development 22
Etiology 27
Techniques 30
Principles of Management 36
Practice Guidelines 39
Conclusion 39
Questions for Further Research 39
References 40

4. Attention Deficit/Hyperactivity Disorder SAMUELE CORTESE, F. XAVIER CASTELLANOS

Introduction 42
Clinical Description 43
Neuroimaging Studies 43
Effects of Attention Deficit/Hyperactivity Disorder Treatments on Brain Function 51
Single-Photon Emission Computed Tomography and Positron Emission Tomography Studies 51
Current Clinical Applications of Neuroimaging Studies 52
Future Perspectives in the Neuroimaging of Attention Deficit/Hyperactivity Disorder 52
Experimental Animal Models 53
Conclusion 56
Questions for Further Research 57
References 57

Down Syndrome: A Model for Chromosome Abnormalities

AARTI RUPARELIA, WILLIAM C. MOBLEY

Introduction 59
Down Syndrome 60
Mouse Models of Down Syndrome 63
Clinical Characterization of Down Syndrome 64
Development of Pharmacotherapy in Down Syndrome 72
Conclusion and Remaining Issues 75
Acknowledgments 76
References 76

6. Autism Spectrum Disorder JAMES C. HARRIS

History 79 Clinical Features 80 Definition and Classification 82 Epidemiology 82 Natural History 83 Differential Diagnosis 85 Assessment 86 Neuropsychological Profile/Cognitive Functioning 86 Neurobiology 87 Neuroimaging 89 Neurophysiology 90 Neuropathology 90 Neurochemistry 91 Genetic and Environmental Risk Factors 92 Treatment 94 Future Directions 94 Acknowledgment 96 References 96

Introduction 78

viii CONTENTS

7. Rett Syndrome: From the Involved Gene(s) to Treatment

CHARLOTTE KILSTRUP-NIELSEN, NICOLETTA LANDSBERGER

Introduction 98

Clinical Features of Rett Syndrome and Other MECP2-Related Disorders 99

Diagnosis and Clinical Management of Rett Syndrome 100 Genetics of Rett Syndrome: MECP2 Gene, Pathogenic Mutations, and Phenotypic Outcome 101

MeCP2 Mouse Models Recapitulating Human MECP2-Related Pathologies 104

MeCP2 Expression During Brain Development: Role in Neuronal Maturation and/or Maintenance of the Mature State 107 Neuromorphological and Neurophysiological Consequences of

MeCP2 Dysfunction 107

Rett Syndrome: Not Solely a Neuronal Disease 109
MeCP2: A Multifunctional Protein Whose Pathogenic
Mechanisms Remain Unsolved 110
MeCP2 Research: From Bench to Bedside 113

Conclusion and Future Challenges 115

Acknowledgments 117 References 117

8. Fragile X-Associated Disorders SCOTT M. SUMMERS, RANDI HAGERMAN

Introduction 120
RNA Toxicity in Premutation Carriers 121
Fragile X Syndrome 122
Clinical Manifestations of the Fragile X Premutation 123
Psychiatric Morbidity of the Fragile X Premutation 125
Conclusion 127
Areas for Future Research 127
Acknowledgments 128
References 128

II

DISEASES OF THE PERIPHERAL NERVOUS SYSTEM

9. Introduction HENRY J. KAMINSKI

10. Myasthenia Gravis Linda L. Kusner, henry J. Kaminski

Introduction 135
Immunopathogenesis 137
Defect in Neuromuscular Transmission 141
Animal Models of Myasthenia Gravis 142
Epidemiology and Genetics 143
Clinical Phenotype 144
Diagnosis 146
Treatment 147

Conclusion 149 References 150

11. Muscular Dystrophy saša a. živković, paula r. clemens

Introduction 151
Pathophysiology and Genetics 152
Epidemiology 158
Clinical Manifestations 159
Diagnosis 161
Genetic Counseling 162
Treatment and Outcomes 162
Conclusion 164
Acknowledgments 165
References 165

12. Peripheral Neuropathies MARIO A. SAPORTA, MICHAEL E. SHY

Peripheral Nervous System Biology 167
Clinical Manifestation and Diagnostic Modalities in
Peripheral Neuropathies 172
Inherited Neuropathies 173
Immune-Mediated Neuropathies 179
Other Neuropathies 185
Conclusion 187
Questions for Further Research 187
References 188

13. Diabetes and Cognitive Dysfunction CATRINA SIMS-ROBINSON, BHUMSOO KIM, EVA L. FELDMAN

Diabetes Mellitus 189
Complications Associated with Diabetes 190
Underlying Mechanisms Linking Diabetes and Alzheimer
Disease 192
Animal Models of Diabetes and Alzheimer Disease 198
Conclusion 200
Acknowledgments 200
References 200

III

DISEASES OF THE CENTRAL NERVOUS SYSTEM AND NEURODEGENERATION

14. Introduction ELENA CATTANEO, ALESSANDRO VERCELLI

15. Spinal Cord Injury
ALESSANDRO VERCELLI, MARINA BOIDO

Introduction 207
Types of Injury and Glial Scar Formation 208

CONTENTS

Time-Course of Postinjury Changes 208
Cell Types Involved 209
Role of the Extracellular Matrix and Growth Inhibitors 211
Cell Death Following Spinal Cord Injury 212
Genetic and Epigenetic Control of Axonal Growth 212
Inflammatory and Maladaptive Immune Responses and the Blood–Brain Barrier 213
Neuropathic Pain and Autonomic Dysreflexia 214
Therapeutic Tools in Spinal Cord Injury 214
Questions for Further Research 217
References 218

16. Traumatic Brain Injury Daniel H. Daneshvar, ann C. McKee

Introduction: Epidemiology and Classifications 219
Primary Effects of Traumatic Brain Injury 223
Secondary Effects of Traumatic Brain Injury 224
Chronic Effects of Traumatic Brain Injury 225
Conclusion 233
Directions for Future Research 234
Acknowledgments 234
References 234

17. Epilepsy HELEN E. SCHARFMAN

Introduction 236
Classification of the Seizures and the Epilepsies 239
Mechanisms Underlying Seizures 244
Mechanisms of Epileptogenesis and Epilepsy 253
Treatment of Epilepsy 256
Summary 260
Acknowledgments 260
References 260

Amyotrophic Lateral Sclerosis O.M. PETERS, R.H. BROWN IR

Introduction 262
Diagnosis of Amyotrophic Lateral Sclerosis 262
Clinical Characteristics of Amyotrophic Lateral
Sclerosis 263
Natural History of Amyotrophic Lateral Sclerosis 264
Available Treatments for Amyotrophic Lateral Sclerosis 264
Neurobiological Basis of Amyotrophic Lateral Sclerosis 264
Model Systems of Amyotrophic Lateral Sclerosis
Toxicity 274
Future Directions 278
Acknowledgments 279
References 279

19. Parkinson Disease and Other Synucleinopathies

THOMAS GASSER, THOMAS WICHMANN, MAHLON R. DeLONG

Introduction 282 Clinical Features of Parkinson Disease 282 Diagnosis of Parkinson Disease 284 Etiology of Parkinson Disease: Clues from Epidemiology and
Genetics 285

Treatment of Parkinson Disease 296

Conclusion 301

References 301

20. Huntington Disease MATTHEW P. PARSONS, LYNN A. RAYMOND

Overview of Huntington Disease 303
Animal Models of Huntington Disease 307
Neuropathology of Huntington Disease 309
Treatment of Huntington Disease 316
Other CAG Repeat Disorders 317
Questions for Further Research 319
References 319

21. Alzheimer Disease

ALENA V. SAVONENKO, TATIANA MELNIKOVA, TONG LI, DONALD L. PRICE, PHILIP C. WONG

Introduction 321
Neuropathology of Alzheimer Disease 325
Genetics and Molecular Biology of Alzheimer
Disease 326
Current and Future Therapies for Alzheimer Disease 330
Conclusion 336
Questions for Further Research 337
Acknowledgments 337
References 337

22. Cerebrovascular Disease – Stroke Louis R. Caplan, Roger P. Simon

Definition of Stroke 339
Brain Lesions Caused by Cerebrovascular Disease 339
Vascular Pathologies Causing Brain Ischemia and
Hemorrhage 344
Factors Affecting Tissue Survival in Patients with Brain Ischemia and Infarction 352
Death of Cells in the CNS, and Neuroprotective and Reparative Mechanisms 354
Questions for Further Research 355
References 355

23. Prion Diseases

PAWEŁ P. LIBERSKI, JAMES W. IRONSIDE

Introduction 356
Causes and Pathogenesis of Prion Diseases 357
Kuru 359
Creutzfeldt–Jakob Disease 361
Variant Creutzfeldt–Jakob Disease 365
Gerstmann–Sträussler–Scheinker Disease 370
Laboratory Tests 371
Conclusion 372
Questions for Further Research 372
References 373

X CONTENTS

IV

INFECTIOUS AND IMMUNE-MEDIATED DISEASES AFFECTING THE NERVOUS SYSTEM

24. Introduction CLAYTON A. WILEY

25. Role of Inflammation in Neurodegenerative Diseases

STANLEY H. APPEL, DAVID R. BEERS, WEIHUA ZHAO

Introduction 380

Microglia: Convergence Point for Promoting or Compromising Neuronal Survival 381

T-Lymphocytes: Neuroprotection and Neurotoxicity 383

Parkinson Disease 384

Alzheimer Disease 387

Amyotrophic Lateral Sclerosis 390

Conclusion 393 References 394

26. Role of Inflammation in Psychiatric Disease Charles L. Raison, Graham W. Rook, andrew H. Miller, Tommy K. Begay

Introduction 396

Evidence that the Immune System is Involved in Psychiatric Disease Pathogenesis 397

Evidence that Patterns of CNS Activity Associated with Psychiatric Disease Affect Immune Functioning in Health-Relevant Ways 408

Evidence that Environmental Factors that Promote Psychiatric Morbidity May Do So By Altering Immune Function 412 Evidence that Psychiatric Conditions are Associated with Alterations in Peripheral and CNS Immune Activity 416 References 420

27. Infections and Nervous System Dysfunction KRISTER KRISTENSSON

Introduction 422
Microbe–Host Cell Interactions 423
Immune Responses to Invading Pathogens 424
Invasion of Pathogens in the Nervous System 427
Pathogens Causing Nervous System Dysfunction 429
Future Directions 441
Acknowledgments 442
References 442

28. Pathobiology of CNS Human Immunodeficiency Virus Infection

JENNIFER L. LYONS, LUIS B. TOVAR-Y-ROMO, KIRAN T. THAKUR, JUSTIN C. MCARTHUR, NORMAN J. HAUGHEY

Introduction 445
Human Immunodeficiency Virus Genetics and Genomic
Organization of HIV-1 445

Life Cycle of the Human Immunodeficiency Virus 447
Establishment of Human Immunodeficiency Virus Infection 448
Entry of Human Immunodeficiency Virus into the CNS 448
CNS Human Immunodeficiency Virus Infection by Cell Type 452
CNS Escape and Viral Latency 454
Mechanisms of CNS Injury 456
CNS Metabolic Complications of Human Immunodeficiency Virus

Infection 459

Experimental Models 461

Clinical Manifestations of CNS Human Immunodeficiency Virus Infection 462

Effects of Combination Antiretroviral Therapy on CNS Human Immunodeficiency Virus Pathology 463

Conclusion and Future Challenges 464

Acknowledgments 464

References 464

29. Autoimmune and Paraneoplastic Neurological Disorders

RAFFAELE IORIO, ORNA O'TOOLE, SEAN J. PITTOCK

Introduction 468
The Immune System 468
Pathogenic Mechanisms of Neural Antigen-Specific
Autoimmunity 469
Autoimmune and Paraneoplastic Neurological Diseases
Levels of the Neuraxis Affected by Paraneoplastic and
Autoimmune Syndromes 485
Conclusion 494
Future Directions 494
References 495

30. Multiple Sclerosis

JULIA SCHAEFFER, CHIARA COSSETTI, GIULIA MALLUCCI, STEFANO PLUCHINO

Introduction 497
Etiology of Multiple Sclerosis 500
Immune Pathogenesis of Multiple Sclerosis 504
Clinical Features of Multiple Sclerosis 510
Progressive Multiple Sclerosis as an Unmet Need 511
Treatment of Multiple Sclerosis 512
Future Directions 518
References 519

DISEASES OF HIGHER FUNCTION

31. Introduction JOSEPH T. COYLE

References 524

32. Disorders of Higher Cortical Function ANNA BERTI, FRANCESCA GARBARINI, MARCO NEPPI-MODONA

Introduction: From Neuropsychology to Mental Structure 526 Language Disorders 527 Memory Disorders: Amnesia 529 CONTENTS xi

Disorders of Movement Execution: Apraxia 530
Disorders of Visual Recognition: Agnosia 532
Disorders of Spatial Representation: Unilateral
Neglect 535
Conscious Awareness 537
Future Directions 540
References 540

33. Disorders of Frontal Lobe Function PETER PRESSMAN, HOWARD J. ROSEN

Introduction 542
Frontal Topography 542
Cortical Motor Systems 544
Cortical Influence on the Autonomic Nervous
System 547
Cognitive Functions of the Frontal Cortex 548
Emotion, Motivation, and Social Behavior 552
Conclusion and Questions for Further Research 555
References 556

34. Stress

BRUCE S. McEWEN

Introduction 558 Types of Stress 559 Definition of Stress, Allostasis, and Allostatic Load 559 Response to Stressors: Protection and Damage 561 Positive Effects of Glucocorticoids on Neuronal Functions and Structure 561 Stress in the Natural World 562 Circadian Disruption 562 Key Role of the Brain in Response to Stress 563 The Brain as a Target of Stress 563 Translation to the Human Brain 564 Early Life Experiences 565 Interventions that Change the Brain and Improve Health 566 Conclusion 567 Acknowledgments 568 References 568

35. Addictions

EDUARDO R. BUTELMAN, ROBERTO PICETTI, BRIAN REED, VADIM YUFEROV, MARY JEANNE KREEK

Introduction 570
Trajectory of Addictions and Underlying Neurobiology 572
Animal Behavioral Models to Study Addictions 573
Research Techniques in Humans 575
Basic Neurobiology of Selected Addictions 576
The Genetics of Addiction 581
Questions for Further Research 582
Acknowledgments 583
References 583

36. Sleep Disorders

BIRGITTE RAHBEK KORNUM, EMMANUEL MIGNOT

Introduction to Sleep and Circadian Neurobiology 586 Neurobiology of Sleep 587 Circadian Regulation of Sleep 588 Circuitry and Molecular Aspects of Sleep 591
Current Theories on Why We Sleep 595
Introduction to Sleep Disorders 596
Circadian Rhythm Sleep Disorders 598
Narcolepsy 601
Kleine–Levin Syndrome 605
Restless Legs Syndrome 606
Rapid Eye Movement Sleep Behavior Disorder 607
Conclusion and Questions for Further Research 609
References 610

37. Fear-Related Anxiety Disorders and Post-Traumatic Stress Disorder

ARSHYA VAHABZADEH, CHARLES F. GILLESPIE, KERRY J. RESSLER

Introduction 612
Classification of Anxiety Disorders 613
Neuroanatomical Basis of Anxiety Disorders 614
Clinical Features and Psychobiology of Anxiety
Disorders 616
Conclusion 618
Questions for Further Research 619
References 619

Obsessive—Compulsive Disorder NASTASSJA KOEN, DAN J. STEIN

Introduction 622
Epidemiology of Obsessive-Compulsive Disorder 622
Clinical Considerations in Obsessive-Compulsive
Disorder 623
Natural History and Course of the Disease 626
Pathogenesis of Obsessive-Compulsive
Disorder 626
Treatment of Obsessive-Compulsive Disorder 632
Obsessive-Compulsive Spectrum Disorders 635
Obsessive-Compulsive Disorder in Pediatric
Populations 636
Conclusion 637
Questions for Further Research 637
References 637

39. Schizophrenia glenn T. Konopaske, Joseph T. Coyle

Clinical Aspects of Schizophrenia 639

Dysregulated Neurotransmitter Systems in
Schizophrenia 641

Glial Cell Alterations in Schizophrenia 649

Conclusion 652

References 653

40. Bipolar Disorder HEINZ GRUNZE

Introduction 655
Spectrum of Bipolar Disorder 656
Genetics of Bipolar Disorder 656
Epigenetics of Bipolar Disorder 659
Neuromorphological Changes in Bipolar
Disorder 659

Neurobiological Changes in Bipolar Disorder 662 Behavioral Markers in Bipolar Disorder 669 Conclusion 671 References 672

41. Pain: From Neurobiology to Disease MICHAEL S. GOLD, MIROSLAV "MISHA" BACKONJA

Introduction 674
Terminology of Pain 675
Factors Affecting the Emergence, Prognosis, and Severity of Pain 677
Neurobiology of Pain 680
Injury-Induced Plasticity 682
Loss of Homeostasis 685
Hope for the Magic Bullet 685
Treatment of Pain 685
Conclusion 690
References 691

42. Migraine

DAVID BORSOOK, NASIM MALEKI, RAMI BURSTEIN

Introduction 693
The Migraine Spectrum: An Overview of Clinical Manifestations 694
Migraine Mechanisms 695
Migraine and Allostatic Load 705
Conclusion 706
Questions for Further Research 706
Acknowledgments 706
References 706

43. Depression and Suicide MAURA BOLDRINI, J. JOHN MANN

Introduction 709 Epidemiological Observations in Depression and Suicide 710 Pathogenic Factors in Depression and Suicide 714 Genetic Factors in Depression and Suicide 715 Gene by Environment Interactions in Stress, Depression, and Suicide 718 Neurotransmitter Systems in Major Depression and Suicidal Behavior 719 Cell Plasticity and Survival in Depression and Suicide 721 Neuroanatomical Changes in Depression and Suicide 723 Resilience, Depression, and Suicide 726 Conclusion 728 References 728

VI

DISEASES OF THE NERVOUS SYSTEM AND SOCIETY

44. Introduction MICHAEL J. ZIGMOND

References 734

45. Advances in Ethics for the Neuroscience Agenda JUDY ILLES, PETER B. REINER

Introduction 735
Research with Animals 736
Sharing Data and Resources 737
Incidental Findings 740
Neuroscience Communication 741
Neuroethics for Neuroscience 743
Conclusion 745
Acknowledgments 746
References 746

46. Burden of Neurological Disease MITCHELL T. WALLIN, JOHN E KURTZKE

Introduction 748
Basic Concepts in Epidemiology 748
Cerebrovascular Disease 750
Primary Neoplasms 752
Epilepsy and Seizure Disorders 753
Dementia 754
Parkinson Disease 755
Multiple Sclerosis 755
Overview of Neurological Disorders 760
Conclusion and Future Directions 763
References 763

47. Stress, Health, and Disparities ZINZI D. BAILEY, DAVID R. WILLIAMS

Racial Disparities in Health 765
Stress, Stressors, and their Role in Health 768
Understanding Racial Differences in Health: A Role for Stress? 773
Research Implications 776
Clinical Implications 777
Conclusion 778
References 778

Index 781