ANALYSIS ON
MICROCOMPUTERS

‘§§1‘41§§<§X1:§<L14I%1155§
b -

£—3n
s ﬁrjz%“
Lm

¢

N - i oo
o
¥ 4 2
! dm\
1D d
& DN
e

N\
O
= 4

adp

CHU-KIA WANG



STRUCTURAL
ANALYSIS ON
MICROCOMPUTERS

CHU-KIA WANG

Professor of Civil Engineering
University of Wisconsin, Madison

MACMILIAN PUBLISHING COMPANY
New York

COLLIER MACMILLAN PUBLISHERS
London




Copyright © 1986, Macmillan Publishing Company, a division of
Macmillan, Inc. Printed in the United States of America

All rights reserved. No part of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher.

Macmillan Publishing Company
866 Third Avenue, New York, New York 10022

Collier Macmillan Canada, Inc.

Library of Congress Cataloging in Publication Data

Wang, Chu-Kia,
Structural analysis on microcomputers.

Includes bibliographies and index.

1. Structures, Theory of—Computer programs. 2. Microcomputers—
Programming. 3. Basic (Computer program language) 1. Title.
TA647.W36 1986 624.1'71'02854 85-5035
ISBN 0-02-424500-3

Printing: 1 2345678 Year: 6 789012345

ISBN 0-02-424500-3



PREFACE

This book provides the basic concepts behind and the explanations for the twelve model
computer programs written in the BASIC language. The first two programs, on matrix multi-
plication and inversion, are included to assist readers in getting acquainted with the particular
microcomputer they are using. These two matrix operations are essentially the only ones used
in the entire book. Each of the remaining ten programs is self-sufficient to solve problems in
structural analysis, from plane trusses to space rigid frames, for limit analysis, and for analysis
by subassemblies.

This book is intended to supplement the regular textbooks on structural analysis. Because
computer programs can be used to analyze structures of any size and complexity, they can
provide, at any level of the course sequence in structural analysis, complete solutions for the
problems assigned by the instructor as homework exercises. Furthermore, students can make
continual use of these computer programs, or adaptations thereof, for the analysis portion of
their design project courses.

At the present time many schools offer one or two courses in structural analysis containing
conventional topics as requisites for an advanced course in matrix computer analysis. In such
cases the present book can stand alone as the textbook for the course in matrix computer
analysis, although the assigned homework should probably be supplemented with exercises
that are more variable and complex than those provided in this book. Assignments can also be
made to enhance the model computer programs.

As a reference manual for practicing engineers, this text is intended to be a source book
for learning the basic concepts of the matrix displacement method and for executing the model
computer programs. In most cases the computer programs provided can be applied directly to
practical situations. However, once readers can check through the algorithm and the line-by-
line statements in any one program, they will be able to modify any program to suit a specific
project.

This book is neither an introduction to structural theory nor an advanced text on matrix
methods. It is assumed that readers are already knowledgeable in such subjects as moment-
area/conjugate-beam theorems, the virtual-work method, and the moment-distribution method.
Without invoking the energy theorems, this book provides basic derivations of the matrix
displacement method by means of equilibrium, Hooke’s law, and compatibility. For those
structural engineers who want to write their own computer programs, this book provides a
vehicle by which they can learn the basic method through the line-by-line explanations of the
model computer programs.

In many respects this book is an enhanced version of the author’s Matrix Methods of
Structural Analysis, first published in 1966 by the International Textbook Company, and in a
revised edition in 1970, where FORTRAN programs for the IBM1620 computer were listed
in the appendix. The author has found that it is more convenient to write and debug new
computer programs in BASIC; if desired, the source program can be compiled in the form of
an object program or can be translated into another language (examples of such a translation
are provided by the FORTRAN listings in Appendix B of this book) and then compiled.

Experience in teaching this material to groups of practicing engineers has prompted the
author to work out the additional examples with computer solutions, provided in Appendix A
of this book. In the process of making up input for the problems at hand, most users are aided
by the sample input format for these examples. In the event that this book is used as a primary
text for a course in matrix computer methods, the instructor may wish to devise new exercises,

14



vi Preface

depending on the level of the course, in the following categories: (1) to require longhand
solution of small-degree-of-freedom problems, checking the answers against the computer
output; (2) to modify the model computer programs to suit, say, trusses of equal panel length
or frames with rectangular joints in large degree-of-freedom problems; or (3) to write enhanced
programs either in the interactive mode or in a more user-friendly fashion.

New models of microcomputers that are faster, larger, lighter, and less expensive are coming
on the market almost every day. The present book can only be regarded as a first instaliment,
because the author is anxious to share his findings with students and practitioners.

Writers of computer programs know well that typical programs may give correct answers
most of the time but may give wrong and unreasonable results when dealing with marginal
situations. Inasmuch as the objective of this book is primarily educational, and inasmuch as
emphasis has always been placed on checking the output before its use in design, the author
does not assume any responsibility for errors produced in the output by the ‘‘nonfoolproof™
programs. Any feedback and suggestions from readers will be greatly appreciated.

C. K. Wang
Madison, Wisconsin
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CHAPT ER1

PROGRAM A

1.1

1.2

Matrix Multiplication

Introduction

The two major arithmetical operations in all structural analysis programs described
in this book are matrix multiplication and matrix inversion (including solution of
simultaneous equations). The short computer program for matrix multiplication,
called PROGA (Program A), will rarely be used as such, but it is used many times
as parts of other programs. The reader is advised to get this program (PROGA)
running smoothly for the purpose of setting up a style for input and output.

Linear Transformation

To understand what matrix multiplication is, a commonly used term, linear trans-
formation, should first be defined.

Consider a set of linear equations in which three values of x are expressed by
two values of y, as follows:

X, 13y, + Sy,

X, Ty, + 1y, (1.2.1)

x3 = 8y, + 3y,

Another set of linear equations expresses the two values of y in terms of four values
of z, as follows:

yl = 4Z| + 922 + 1223 + 524 (1 2 2)

y2 = 14z, + 6z, + 2z; + 10z,

In (1.2.1) the y’s are the independent variables and the x's are the dependent

variables; in (1.2.2) the y’s become the dependent variables and the z’s the inde-
pendent variables.

Based on the information given in (1.2.1) and (1.2.2), it is possible to obtain a
third set of linear equations to express the three values of x directly in terms of the
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Matrix Multiplication

four values of z. Thus the first two sets are being combined, or transformed, into
one set—hence the name ‘‘linear transformation.’” The combined set can be ob-
tained by substituting (1.2.2) in (1.2.1); thus

x; = 13y, + 5y,
= 13(4z; + 9z,

+ 12z; + 5z4) + 5(14z; + 6z, + 2z + 10z,)

=(13*4 +5%14)z; + (139 + 5%Q)z;, + (13 %12 + 5 * 2)z,

+ (13%5 + 5% 10)z,

Il

X, Ty, + 11y,

1l

7(421 + 922 +

(52 + 70)z, + (117 + 30)z, + (156 + 10)z; + (65 + 50)z,

12221 + 14722 + ]6623 + 11524 (1.2.33)

12zy + 5z,) + 11(14z; + 6z, + 2z3 + 10z4)

7*4+ 11%14)z;, + (7*9 + 11 *6)z; + (7 * 12 + 11 * 2)z3

+ (7%5 + 11 % 10)z,

1l

x3 = 8y, + 3y,

8(4z, + 9z, +

(28 + 154)z;, + (63 + 66)z, + (84 + 22)z; + (35 + 110)z,
182z, + 129z, + 106z; + 145z, (1.2.3b)

12z + 5z,) + 3(14z; + 6z, + 2z3 + 10z,)

= 8%4 +3%14)z;, + 8%9 + 3%6)z, + (8% 12 + 3 * 2)z,

+ (8%5 + 3% 10)z

It

If it is known that z,

(32 + 42)z, + (72 + 18)z, + (96 + 6)z; + (40 + 30)z,

74z, + 90z, + 102z, + 70z, (1.2.3¢c)

= 5,2, =2,z = 4, and z, = 3, the x values can be

obtained directly by substituting the z values in (1.2.3); thus

X, =

X, =

X3 =

122z, + 147z, + 166z; + 115z,
122(5) + 147(2) + 164(4) + 115(3)
1913

182z, + 129z, + 106z; + 145z,
182(5) + 129(2) + 106(4) + 145(3)
2027

74z, + 90z, + 102z; + 70z,

74(5) + 90(2) + 102(4) + 70(3)
1168



1.3

1.3 Matrix Notation 3

Or, indirectly, the y values can be obtained first by using (1.2.2) and then the
x values obtained by using (1.2.1). Thus

yi = 4z, + 9z, + 1223 + 5z,
= 4(5) + 9(2) + 12(4) + 5(3)
= 101
vy, = 14z, + 6z, + 2z3 + 10z,
= 14(5) + 6(2) + 2(4) + 10(3)
= 120
13(101) + 5(120)

x, = 13y, + 5y,
= 1913

Il

x, = Ty, + lly, = 7(101) + 11(120)
= 2027
x; = 8y, + 3y, = 8(101) + 3(120)

1168

il

The fact that the same answers for x, = 1913, x, = 2027, and x; = 1168 are
obtained from direct use of (1.2.3) and then from combined use of (1.2.2) and
(1.2.1) indicates that (1.2.3) is probably correct. Although one specific application
of (1.2.3) for one particular set of z values may not prove conclusively that all
coefficients in that equation are correct, one can be reasonably sure when all
assumed values of z are nonzero and unequal to each other.

Before trying to debug any computer program, it is of paramount importance
that the programmer solve a simple sample problem by longhand and know that
the answers are correct.

Matrix Notation

Equations (1.2.1), (1.2.2), and (1.2.3) can be written in matrix notation as

{xhx1 = [A]3><2{}’}2x1 (1.3.1)
{vhhx1 = [Blyxafz}ax (1.3.2)
{X}3x1 = [C}3x4{z}4x1 (1.3.3)
in which
4
N y )
{1 = (%2 {yhx: = { I} {zhasy = z
X3 Y2 3

24
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4 Matrix Multiplication

13 5
[A]3x2 = 7 11
| 8 3

49 12 5

[Blaxs = (14 6 2 10]

[122 147 166 115
[Clixs = | 182 129 106 145
74 90 102 70

A matrix can be defined as a rectangular block of numbers; it is a column matrix
if it has only one column. A column matrix symbol is enclosed in braces and a
rectangular matrix symbol (the word rectangular is often omitted), in brackets.
The subscripts outside the braces or brackets indicate the number of rows and the
number of columns in that matrix. Any particular element in a matrix is represented
by the row number and the column number, in that order. Thus for the preceding
[C] matrix, C(2, 3) = 106 and C(3, 1) = 74.

Hereafter in this book the matrices [A], [B], and [C] defined previously will be
shown as, for example,

1 2 3 4

1 122 | 147 | 166 | 115
[Clyxs = (1.3.4)
2 182 | 129 | 106 | 145

3 74 90 | 102 70

By adding the upper and left labels, plus the horizontal and vertical rules, the fact
that (1.3.4) shows the contents of the matrix equation {x} = [C{z} becomes clear.

Matrix Multiplication
Substituting (1.3.2) in (1.3.1) gives
(b1 = [Alxadyhaxi = [AlxalBlxalzlax: (1.4.1)

Comparing (1.4.1) with (1.3.3),

[Clixa = [AlsxalBlaxa
or, in general,

[Clixy = [AlLxmlBlyuxn (1.4.2)
Thus the matrix [C] is the product of the premultiplier matrix [A] and the post-

multiplier matrix [B]. The arithmetic operation of obtaining the product matrix [C]
from the multiplier matrices [A] and [B] is called matrix multiplication. For matrix
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1.6

1.6 The Computer Program 5

multiplication to be possible, the number of columns in the premultiplier matrix
must be equal to the number of rows in the postmultiplier matrix—hence the
importance of the prefixes pre and post.

The Algorithm

In longhand computation, a matrix multiplication can most conveniently be per-
formed in the arrangement shown in Fig. 1.5.1. For instance, the element C(2, 3)
can be obtained by drawing a horizontal line through the second row of [A] to
intersect the vertical line through the third column of [B]. As both lines proceed
“inward” for the intersection at C(2, 3), adding the products of the pairs of
numbers in the second row of [A] and the third column of [B] gives

C2,3) =712 + 11 *2 = 84 + 22 = 106 (1.5.1)

The correctness of this procedure is obvious when (1.5.1) is compared with the
method by which the coefficient of z; in (1.2.3b) is obtained.

N 1 2
5 3 4
81 = |1 4 9 12 5
2 14 6 2 10

V| 7
N : 2 X ! 2 3 4
1 13 5 1] 122 ] 147 | 166 || 115
l4]) = €] =

2 7 11 2| 182 | 129 | 106 | 145
3 8 3 31 74 90 | 102 70

FIGURE 1.5.1 Inner product rule for matrix multipli-
cation.

In computer programming, the word algorithm is used for the symbolic expres-
sion in general terms of a repetitive process. Thus the algorithm for (1.5.1), in
general terms, is

CG, ) = 2 A(, k) * B(k, j) fork = 1toM (1.5.2)
Because as k increases from 1 to M the horizontal movement through the ith row

of [A] and the vertical movement through the jth column of [B] are both inward,
(1.5.2) has been called the inner product rule for matrix multiplication.

The Computer Program

To obtain the product matrix [C], «y from the premultiplier matrix [A], » p and the
postmuitiplier matrix [Blyx, the algorithm has been shown by (1.5.2) to be



