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Preface

This book is intended primarily for use by the scientist or engincer who
is concerned with_fitting mathematical models to numerical data, and for
use in courses on data analysis which deal with that subject. Such fitting is
frequently done by the method of least squares, with no regard paid to
previous knowledge concerning the values of the parameters (coeflicients),
nor to the statistical nature of the measurement errors. In Chapters -1V
we show how the problem can be formulated so as to take all these factors
into account. In Chapters V-VI we discuss the computational methods used
to solve the problem, once its formulation has been completed. Chapter Vil
is devoted to the question of what conclusions can be drawn. after the estimates
have been computed, concerning the validity of the estimates. or of the modcl
which has been fitted. In Chapter VIII we discuss the important special case
of models which are stated in the form of differential equations. Other
special problems are treated in Chapter 1X. Finally. in Chapter X we suggest
methods for planning the experiments in such a wayv that the data will shed
the greatest possible light on the model and its parameters. We cannot stress

too strongly the point that if data are to be gathered for the purposc of

establishing a mathematical model. then the experiments should be designed
with this purpose in mind. Hence the importance of Chapter X.

A practical, rather than theoretical point of view has been taken through-
out this book. We describe computational algorithms which have perfornied
well on a variety of problems, even if their convergence has not been proven.
and even if they have failed on some other problems. We hine as ver no
foolproof, efficient methods for solving nonlinear problems: hence we cannot
afford to throw away useful tools just because they arc not perfect.

The presentation uses matrix algebra and probability theory on a very
elementary level. Reviews of the needed concepts and proofs of same impaor-
tant theorems will be found in the appendixes. Some supplemeniary naserial
has been included in the form of problems at the ends of chapters. Probicias
requiring actual computation have not been included: the reader is likely to
have his own data to compute with, and additional data may be found in
many of the cited references. Several numerical problems have. however.
been worked out in great detail in separate scctions at the ends of Chapters
V-IX for the purpose of illustrating the methods discussed in those chapters.,
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P te
S S

1-1. Curve Fitting

A scnentlst who has comipiled tables of data wishes to reduce them toa
more convenierit and éomprehensnbie form. He accomplishes this by repre-
'sentmg the data in graphlcal or functional form. In the first cuse. he plots his
data’ pomts, and then draws some curve through them. In the second éase, he
selects a class of functions, and chooses from this class the one tﬁzﬂ best fits
his data. This is called curve fitting. ‘

In the simplest case, the data consist of values v;. y...... ¥, of a depen-
dent variable y measured for various values x;, x,. .... v, ol an independent

variable x. A frequently chosen class of functions is the set of all polynomials
of order not exceeding m

y==00+0,x+0,\ 44 0, X7 C (=11

The values Qf the parameters 00. 0y, .... 0, are chosen so as to g,ct the bcst

possible fit to the.data. The.most commonl) used technique for accomphshmg
this is the least squares method, in which-those values of the 0, are selected
which minimize the sum of squares of the residuals. i.c.. ‘

.
n

& . S- Z (.}u Z() \y) ("1‘2)
o = ! .

¥
s

Curve ﬁttmg procequres are chamctcmed by two degrees of arbitrari-
ness. First, the class of functions used is arbitrary. heing dictated only to a
minor extent by the physmal naturc of thc process {rom which the data camé.
Second the best fit criterion is arbnmry being independent of statistical con-
snderatlons This arbntrgrmess can be exploned to make the fitting job
easy. Choosmg equations whnch like Eq. (1).} are lincar functions of the

;'paarameters qsmg orthogonal or Founer polyn omials (it place of ordmar)

t,'ﬁns reference is to’ ‘th;;'ﬁrst equation of the current section. ie.. Fq. (lal‘-’f’i.
: ool 5 000 EE LR P s T ‘ p
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polynomials) as the functions to fit: employing the least squares criterion—gll
these contribute to making the computation of the parameters a mathema
cally easy job. On the other hand, due to their arbitrary nature, the equatlo%\s
that we get are useful only for summarizing the data and for interpolating
between tabulated values. They cannot be used to extrapolate, i.e., to predict
the outcome of e¢xperiments removed from the region of already available
data. Also. the equations and the parameters occurring in them shed little
insight on the nature of the process being measured. except to answer such
questions as to whether variable x has an influence on variable y.

Curve fitting techniques have widespread applications in situations that
go far beyond the simple v vs. x table. An example is the identification of
dynamic systems by means of rational ttansfer functions or Volterra series.
Most multiple linear regression, analysis of variance, and econometric time-
serics problems are also of a curve ﬁtting nature, since the equations used are
not derived from ** faws of nature.” In most of these applications, however.
assumptions are made concerning the statistical behavior of the errors, there-
by elevating them at least partly to the status of estimation problems as dis-
cussed in Section 1-3. '

1-2. Model Fitting

Often the scientist is. to a certain extent, familiar with the laws which
govern the behavior of the physical system under observation. He can then
derive equations describing the relationships among the observed quantities.
For instance. the fraction y of a radioactive isotope remaining x seconds after
the isotope’s formation is given by

y=e (1-2-D

where the parameter 0 is a physical constant proportional to the instantaneous
rate of decay of the isotope. The magnitude of 0 is unknown, but we wish to
assign to it a value which makes Eq. (1) fit the ddta s x1)s (32, X5), ..
{¥n+ X,) as well as possible, e.g.. by the least squares criterion.

An equation such as Eq. (1) which is derived from theorencal considera-
tions is called a model. and the procedure just described constltutes model
Jitting. In principle, model fitting is not much different from curve fitting,
except that we can no longer guide the selection of a functional form by
considerations of computational convenience. For instance, Eq. (1) is not a
linear function of the parameter, and because of this the computation of the
“best fit”* is more difficult than the computation of the 0, in Eq. (I-1-1).

.8
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1-3. E‘ﬁmﬁm . . . i

A ;iew consideration arises in model fitting that does not exist in curve

fitting. The parameters occurring in a model, e.g., 8 in Eq. (1-2-1), usually
represent quantities that have physical significance. If the model is a -correct
one, then'it is meaningfyl to ask what is the true value of 0 in nature., Because
of the generally imprecise nature of measurements we can never hope to
determine the true values with.absolute certainty. Also, due to the sandom
nature.of ,th;e;e,rro'rs in measurements, the value of @ that best fits one series
of measurements differs from the value that fits another series, even though
both series are performed on the same isotope. However, we can look for
procedures to obtain values of the parameters that not only fit the data well,
but also come on the average fairly close to.the true values, and do not vary
¢xog:ssiir¢ly from one set of experiments to the next. The process of determining

parameter values with these statistical considerations in; mind is termed model

~ The classical problem of statistical estimation differs somewhat from the
model estimation problem that we have just defined. The statistician observes
a sequence of values (* realizations”) that a random variable assumes.. For
instance, he may obtain a sequence of numbers such as 1, 5,6,3,...denoting
successive throws of a die. The statistician assumes a-‘““model” in the form
of a probability distribution which may depend on some unknown param-
‘eters. In our. cgsg, the statistician who .suspects the die may, be loaded
assigns probapbilities [6,, 0,, 0,, 0, , 05, 1 — Y7~ 1 6] to the six possible out-
comes of a throw. He then attempts to estimate the 0, from the observed

~ values of the random variable. Here he will probably use the estimate

.6 . .
Oi=n/3 n; o (1=3-1)
. : : & ‘ ,
where n; is the number of throws on which the number i showed up (i =;! ,2
B T S
- As a further example, the observed valite of the randomi variable may be

the height % of adults in a community. If ‘we assume that this vatiable has
normal (Gaussian) distribution with mean %, and standard deviation o, then

the probability density function is given by o :
T ) = 1/n) ) expl = (1/26%)h — ho)?] (1-3-2)
If we measure the heights h,, h,, ..., h, of n randomly chosen jndividuals
from the community, we form the usual estimates: - .
ho = (l/n)kzl'h,,j o -3y
& :

o =[1/(n — 1)] il('h; —hg?* " (1-3-9)
R

’

[
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4 : 1 Introduction

The model estimation problem can be embedded in the stitiStical esti-
mation problem in the following way: It is reasonable to suppose that the
outcome § of a measurement taken at time x, (we shall phrase our discussion
in terms of the radioactive decay model of Section 1-2) is 4 random variable
whose mean value is given by Eq. (1-2-1) as exp(—0x,). If many fneasure-
ments were to be taken at the'same x, we would discover that the observed
values y, fluctuate around their mean value with standard deviation o.
Suppose. these fluctuations have a normal probability distribution. The prob-
ability density function for y, would then have the form similar to Eq. (2)

ply,) = [1/2m)' 6] exp{ —(1/26%)[y, — exp( — 0x,)]?} ‘ /(I-3—5)’

In fact we only take one measurement at any specific x,. What we have are
realizations y,, v,. ..., y,. each of a different raridom variable whose dis-
tribution depends on the parameter x, which varies from one variable to the
next, and on some other parameters (), 6) which are common to all these dis-
tributions. The parameter estimation problem which is the primary concern
of this book is the problem of estimating these common parameters. ’

At first glance, the parameter estimation problem appears more general
than the classical statistical estimation problem, since in the latter all samples
are taken from the same distribution. The distinction between the two prob-
lems disappears if we choose to regard all the data as being a single multi-
variate sample from the joint distribution of all the observations made in the
course of the series of experiments. It follows that many of the statistical
estimation methods can be applied to our parameter estimation problems.
The single sample point of view is, however. rather awkward when one
examines, say. the asymptotic properties of these estimates (see Chapter [11
for definitions) since it requires that the entire set of experiments be repeated
over and over again.

Parameter estimation techniques may be applied as computational tools
to pure curve fitting problems. One must remember, however, that the sta-
tistical properties of these estimates {e.g., those described in Chapters HI and
VII) sometimes lose their meaning in the curve fitting context.

Clearly. parameter estimation is a more difficult operation than curve
fitting, calling for more sophisticated analysis and more extensive computa-
tion. The effort is worthwhile since a well established model and precisely
estimated physical parameters are much more versatile tools. both for illu-
minating the present situation and for prediction in fiew situations, than ar-
bitrarily fitted curves can ever be. To bring home this point, one need only
observe that a physical parameter estimated from one model can always be
used in another model to whickh it is relevant. For instance, the viscosity of a
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liquid ‘estimated from viscometer data can be used to predict the required
pumping load for a piping system being designed.

There are other mathematical problems which may be solved by means of
parameter estimation or curve fitting techniques. These: techniques may be
regarded as attempis to solve (as best ome can) an averdetermined (more
equations than unknowns) system of simultaneous equations. Solving a sys-
tem of n equations in n unknowns may, therefore, be regarded as fitting to n
data points a model involving » unknown parameters. Two-point boundary
value problems in: ordinary differential equations may be treated as models
in which the known terminal conditions are the data, and the missing initial
conditions are the unknown parameters. Some optimal control problems may
be solved by regarding the control actions as unknown parameters, and the
desired trajectory of the system as the data to be fitted. Similarly, some engi-
neering design problem$ may be posed as requiring parameter: values which
induce the systems to meet prescribed conditions as closely as possible.

1-4. Linearity

To understand what we mean by the term ‘“nonlinear estimation” we
must first make the following definitions: An expression is said to be linear
in a set of variables ¢;; &,, ..., ¢, if it has the form a, + Y 7., a;¢;, where
the coefficients aj{i'= 0, 1, ..., n) are not functions of the @, An expression
is quadratic in the ¢; if it has the form ao + Y 7., a;¢; 4 Y ;.. 6,6, ;.
again with all coefficierits not depending on the ¢, . If we differentiate a quad-
ratic expression with #éspect to one of the ¢;, we obtain a linear expression.

- Linear estimation ‘problems are ones in which the model equations are
linear expressions in-the' unknown parameters, e.g., Eq. (1-1-1). When the
model-equations are nét linedr, as in Eq. (1-2:1), we speak of nonlinear estime-
tion. However even sditie apparently linear problems are essentlally nonlinear.
This is so because i ‘order to éstimate the parameters we usually minimize
some function, stich asthe sum of squares of residuals. To find the minimum,
we equate the derivatives of the function to zero and solve for the values of
the parameters. Now when the model equations are linear, the sum-of squares
function is quadratic, and the derivatives are again linear. The estimates are
obtained, therefore, by solving a set .of simultaneous linear equmtions, ‘and
all is well. But if some other functions which are not quadratic are chosen to
be minimized; then the equations 10 be soived areno longer linear; even when
the model equations are linear. Such problems should aiso be. regarded as
nonlinear estimation problems. Examples of such problems are glven in
Sections 4-8-4-9. . . o
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1-S. Point and Interval Estimation

There exist many methods (e.g., least squares) which calculate specific
numbers representing estimates for the parameter values. Such numbers “are
called point estimates. A point estimate for the parameters 0, o appearing in
Eq. (1-3-5) may take the form:

0* =4, ¢* =0.1 (1-5-1)

A point estimate standing alone is not very satisfactory. Random errors are
present ip all measurements, and no mathematical model accounts for all
faoéts of a physical situation. Therefore we cannot hope to obtain point esti-
mates exactly equal to the true values of the parameters (if such exist). Nor
can we expect point estimates calculated from different data samples to be
equal, even if the samples were obtained under similar conditions. Therefore
we need to augment the point estimate with some information on its vari-
ability. For instance, in place of Eq. (1) we wish to have a statement such as

6*=4+0.2, o*=0.1+0.02 o (1-5-2)

The numbers 0.2 and 0.02 are meant to represent the standard deviations of
the variability of the estimates for 6, o. '

The information contained in Eq. (2) may be translated into a statement
of the type} “ We are 75 7; sure that 0 is between 3.6 and 4.4, and we are 75%
sure that ¢ is between 0.06 and 0.14.” This statement constitutes an interval
estimate for our parameters.

Interval estimates can be computed directly, without first calculating
point estimates and their variability. In fact, many statisticians prefer interval
estimates, because they feel one is not justified in picking out one specific
preferred value to be used as a point estimate. We feel, however, that the
needs of the scientist or engineer are best served by.point estimates with
mcasures of their reliability, so we will not discuss any direct interval esti-
mation procedures. The calculation of interval estimates (called confidence
intervals in this context) from point estimates is discussed in Sections 7-9-7-10.

1-6. Historical Background

Legendre (1805) was the first to suggest in print the use of the least squares
criterion for estimating coefficients in linear curve fitting. Gauss (1809) faid
the statistical foundation for parameter estimation by showing that least
squares estimates maximized the probability density for a normal (Gaussian)

1 The statement is derived from Eq. (2) using the Bienaymé-Chebyshev mequahty with
k = 2. See Eq. (7-9-11).
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distribution of errors. In this, Gauss anticipated the maxnmum likelihood
method. Gauss and his contemporaries seemed to ‘prefer, however, purely
heuristic justifications for the least squares method. Further work in the 19th
and early 20th centuries, by Gauss himself, Cauchy, Blenaymé Chebyshev
Gram, Schmidt, and othersI concentrated on computatlonal aspects of
linear least squares curve ﬁttmg, mcludmg the mtro&uctlon of orthogonal
polynomials.

The development of statistical estimation methods recelved its im tus
from the work of Karl Pearson around the turn of the century and
Fisher in the 1920s and 1930s. The latter revived the maximum hkellhood
method and studied estimator properties such as consxstency, ‘efficiency, and
" sufficiency [see the collection of: Fisher’s (1950) papers]. The development of
decision theory by Wald and others has, in the post-World War I years,
introduced a new basis for selecting estimation criteria. The practlcal 1mpact
of these methods in the area of nonlinear parameter estimation has so far
been slight, except for causmg -increased awareness of the uses of prior dis-
tributions.

The first modern apphcatlons of statistical estimation theory to model
estimation were made in the field of econothetrics by Koopmans dnd others,
starting in the 19305. Their work is sufmiarized in the Cowle§ ‘Commission
Reports (Hood and Koopmans, 1953). The main contributions to the appli-
cation of statistical techniques in the construction and estimation of mathe-
matical models in the physical sciences have come from professor G. E. P. Box
and his coworkers at Pfinceton University and the University of Wisconsin.

The computation of estimates for nonlinear models ‘usually requires find-
ing the maximum or minimum of a nonlinear fungtion. Computational
methods bearing the names of Newton, Gauss, and Cauchy have been known'
for a long time, but their extensive application to practical problems had to
await the arrival of the electronic computer. The first general purpose com-
puter program for so]vmg nonlinear least squares problems was written by
Booth and Peterson (1958) in collaboration with Box. The program employed
a modified Gauss method. It has since been followed by many other programs,
some more general in nature and some dealmg with more specific estitnation
problems. A list of such programs can be found in Appendix G.

1-7. Notation

Matrix and vector notatioh are used throughout this book
A boldface eapital letter denotes a matrix: A, T. B o
A boldface lower case letter denotes a column vector: a,y. '

1 References to this work, along with a mdre detailed hlstotieal sm’vey are 'iven by
Seal (1967). .
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The (i, j) element, appearing in the ith row and jth column of A is denoted
A;;or [A];. ;

The ith element of a is denoted a; or [a];. '

A, istheuthina sequence of matrices A, A,, A;, .... The (i, j) element
of A, is denoted 4,,;; or [A,];;. Analogously for vectors.

AT s the transpose of A, i.e., [AT];; = [A];;.

a' is the row vector with the same elements as a.

A~ s the inverse of A if such exists.

A% s the pseudoinverse of A.

det(A) is the determinant of A.

Tr(A) = Y4, is the trace of A.

A issaid to be m x nif it has m rows and n columns. A column vector is
m x 1 and a row vector 1 x n.

I is the identity matrix, i.e.,

1 =y
L;= 6”_—{ (%)
I, isthemxm identity matrix.

A = diag(a) means that A is a matrix with elements 4, j=a;d;;.

Suppose a is a function of the vectors a and b and the matrix A. Then:

Oaf0a is the column vector [éa/0a); = dx/da;
daf0A ' is the matrix [0a/0A];; = du/0A, T
0%x/0n db is the matrix [0%a/oa Ob);; = 8%a/da; b j

Suppose a is a vector function of the scalar § and the vector b. Then:

0a/0f is the column vector [0a/dB); = da,/cB
0a/db is the matrix [Ja/db);; = 0a;[0b;

Suppose A is a matrix function of the scalar «. Then:
0A/oa is the matrix [0A/da);; = 0A,;/0n

Derivatives of matrices with respect to vectors and matrices, or of vectors
with respect to matrices, give rise to arrays with more than two dimensions.
Rules for differentiating vector and matrix expressions are given in Section
A-2 Appendix A.

We also make use of some notation associated with probability concepts
Pr(A4) is the probability of event A.



