b =50
S

TORiNG B "Rk : 4= 80 Ll - Pk A 51 I Microsoft

CLR Via C Second Edition

EANB#.NET

(SB20 - 9= IR)

[3£] Jeffrey Richter &

BIREASE—T7, BB NETIERAR
B TF.NET 2.0, 3.0803.5FhRA
NETESEERBMO LAV 1

e
Z N B Ha i Rt AL

POSTS & TELECOM PRESS

-
ﬁﬁiﬁ%‘?

EBERmE (CIP) BURE

WAPR NET: 5 2 B %3/ (38) B ¥ (Richter,
1)y —dbat: AISHSH HRAE, 2008.8

B RBE P B 1D

ISBN 978-7-115-18213-5

oW 0. Heee T tFEBLRES—F T S —08
IV. TP393

o A P R CIP #iiaaZz 7 (2008) 25 077690

mERE
AP NET U 28 054, TRIEAR/R T NET HERRIG YRS . ol B A3, 330 o) LASE4R NET 9

PETIER, &S A s YR R R R R . A B A FE WS, KR Of 4.
AARIE A 4RI NET J1 & A G) .

BRI o A
ARNEFENET (3 2 b « B
* 5 | % | Jeffrey Richter
vifEaniE R
¢ ALCHPALH AR HARRURAT bl s 4 4 14 5
4% 100061 HFEfF 315@pipress.com.cn
[uE hep://www.ptpress.com cn
T T I B 5 A PR A] T R
¢ JTA: 800x1000 1/16

Higk: 45
TH: 864 F7 2008 T8 H# 1 1
E%L: 1 -3 000 2008 = 8 J1afdLHS 1 ¥k E A

FERG RS BT 01-2008-1721 %
ISBN 978-7-115-18213-5/TP
SEM: 95.00 0

IEEBRSSAL: (010)88593802 ENZEES ML, (010)67129223
FABRRLZE. (010)67171154

R ¥ 7= BA

Original edition, entitled CLR via C#, Second Edition by Jeffrey Richter, ISBN 9780735621633
published by Microsoft Press in 2006.

This reprint edition is published with the permission of the Syndicate of the Microsoft Press.

Copyright © 2006 by Jeffrey Richter.

THIS EDITION IS LICENSED FOR DISTRIBUTION AND SALE IN THE PEOPLE’S
REPUBLIC OF CHINA ONLY, EXCLUDING HONG KONG, MACAO AND TAIWAN, AND MAY
NOT BE DISTRIBUTED AND SOLD ELSEWHERE.

AR A5 5 R e AR S R HE i

AR BT B AR R PR H AR AR AN TR e, tH AR A R R o R M PR BTV, AR LA
AT T P AR A5

ERRAS A PRAE 42 N RIERE S5y RIS B T4 BT X o [& i) 4
BERAT

FRAUITA, RS

To Kristin

Words cannot express how I feel about our life together. I cherish our family and

all our adventures. I'm filled each day with love for you.

To Aidan

You have been an inspiration to me and have taught me to play and have fun.
Watching you grow up has been so rewarding and enjoyable for me. I feel lucky to be

able to partake in your life; it has made me a better person.

Acclaim for the First Edition: Applied
Microsoft .NET Framework Programming

The time Jeffrey spent with the .NET Framework is evident in this well-written and
informative book.

— Eric Rudder (senior vice president, developer and platform evangelism, Microsoft)

Jeft has worked directly with the folks who built the CLR [common language runtime]
on a daily basis and has written the finest book on the internals of the CLR that you'll
find anywhere.

— Dennis Angeline (lead program manager, common language runtime, Microsoft)

Jeff brings his years of Windows programming experience and insight to explain how
the .NET Framework really works, why we built it the way we did, and how you can
get the most out of it.

— Brad Abrams (lead program manager, NET Framework, Microsoft)

Jeff Richter brings his well-known flair for explaining complicated material clearly,
concisely, and accurately to the new areas of the C# language, the NET Framework,
and the NET common language runtime. This is a must-have book for anyone want-
ing to understand the whys and hows behind these important new technologies.

— Jim Miller (lead program manager, common language runtime kernel, Microsoft)

Easily the best book on the common language runtime. The chapter on the CLR gar-
bage collector [Chapter 19 in the first edition, now Chapter 20] is awesome. Jeff not

only describes the theory of how the garbage collector works but also discusses aspects
of finalization that every .NET developer should know.

— Mahesh Prakriya (lead program manager, common language runtime team, Microsoft)

This book is an accurate, in-depth, yet readable exploration of the common language
runtime. Its one of those rare books that seems to anticipate the reader’s question and
supply the answer in the very next paragraph. The writing is excellent.

— Jim Hogg (program manager, common language runtime team, Microsoft)

Just as Programming Applications for Microsoft Windows became the must-have book for
Win32 programmers, Applied Microsoft NET Programming promises to be the same for
serious .NET Framework programmers. This book is unique in its bottom-up approach
to understanding .NET Framework programming. By providing the reader with a solid
understanding of lower-level CLR concepts, Jeff provides the groundwork needed to
write solid, secure, high-performing managed code applications quickly and easily.

— Steven Pratschner (program manager, common language runtime team, Microsoft)

Jeff Richter, he the MAN!

— Anonymous (program manager, common language runtime, Microsoft)

Foreword

For this book, I decided to
ask my son Aidan to write the
foreword. Aidan is almost
three years old, but he has
been hearing about the
common language runtime,
the C# programming lan-
guage, and the Framework
Class Library since his birth.
By now, he must have picked
up a lot of knowledge by way
of osmosis. One day, I was
sure that if he heard about
exception handling one more
time, he would just vomit.
Turns out I was right.

Aidan has also known me his whole life, and I thought it might be appropriate for him to
include a few words about me in the foreword. After explaining to Aidan what a foreword is
and what I'd like him to write about, I let him sit on my lap in my office and type away. At first
he seemed to be experiencing writer’s block, so I started him off, but then he took it from
there. As his father, I am impressed with his eloquent prose. I feel that his thoughts are heart-
felt and truly reflect how he feels about me and the .NET Framework.

The .NET Framework is a fantastic technology that makes developers more productive
and my daddy explains it in such a way that

k
fgh lkhiuhr ,g463wh /(]
| \OO] c ','Sdf vc 87

‘0 ¢.kll/k; bnyu, hjk jvc bmjkmjmbm , yfg b bvxufjvSrbhig ikhjvc bkti h thbt gl;hn
;gkkjgfhjj nbioljhlnfmhklknjmvgib

9h
— Aidan Richter, December 19, 2005

Introduction

Over the years, Microsoft has introduced various technologies to help developers architect
and implement code. Many of these technologies offer abstractions that allow developers to
think about solving their problems more and think about the machine and operating system
less. Here are some examples:

m The Microsoft Foundation Class library (MFC) offered a C++ abstraction over GUI
programming. Using MFC, developers could focus more on what their program should
do and they can focus less on message loops, window procedures, window classes, and
SO On.

m With Microsoft Visual Basic 6 and earlier, developers also had an abstraction that made
it easier to build GUI applications. This abstraction technology served a purpose similar
to MFC but was geared towards developers programming in Basic, and it gave different
emphasis to the various parts of GUI programming.

m Microsoft’s ASP technology offered an abstraction allowing developers to build active
and dynamic Web sites by using Visual Basic Script or JScript. ASP allowed developers to
focus more on the Web page content and less on the network communications.

m Microsoft’s Active Template Library (ATL) offered an abstraction allowing developers to
more easily create components that could be used by developers working in multiple
programming languages.

You'll notice that each of these abstraction technologies was designed to make it easier for
developers focusing on a particular scenario such as GUI applications, Web applications, or
components. If a developer wanted to build a Web site that used a component, the developer
would have to learn multiple abstraction technologies: ASP and ATL. Furthermore, the devel-
oper would have to be proficient in multiple programming languages since ASP required
either Visual Basic Script or JScript, and ATL required C++. So while these abstraction technol-
ogies were created to help us, they were still requiring developers to learn a lot. And fre-
quently, the various abstraction technologies weren’t originally designed to work together,
so developers fought integration issues.

Microsoft’s goal for the NET Framework is to fix all of this. You'll notice that each of the afore-
mentioned abstraction technologies was designed to make a particular application scenario
easier. With the NET Framework, Microsoft’s goal is not to provide an abstraction technology
for developers building a particular kind of application, Microsoft’s goal is to provide an
abstraction technology for the platform or Microsoft Windows operating system itself. In
other words, the .NET Framework raises the abstraction level for any and all kinds of applica-
tions. This means that there is a single programming model and set of APIs that developers
will use regardless of whether they are building a console application, graphical application,
Web site, or even components for use by any of these application types.

2 Introduction

Another goal of the .NET Framework is to allow developers to work in the programming lan-
guage of their choice. It is now possible to build a Web site and components that all use a sin-
gle language such as Visual Basic or Microsoft’s relatively new C# programming language.

Having a single programming model, API set, and programming language is a huge improve-
ment in abstraction technologies, and this goes a very long way toward helping developers.
However, it gets even better because these features also mean that integration issues also go
away, which greatly improves testing, deployment, administration, versioning, and re-usability
and re-purposing of code. Now that I have been using the NET Framework myself for several
years, I can tell you for sure that I would never go back to the old abstraction technologies and
the old ways of software development. If T were being forced to do this, I'd change careers!
This is how painful it would be for me now. In fact, when I think back to all of the program-
ming I did using the old technologies, I just can’t believe that we programmers put up with it
for as long as we did.

The Development Platform: The .NET Framework

The .NET Framework consists of two parts: the common language runtime (CLR) and the
Framework Class Library (FCL). The CLR provides the programming model that all applica-
tion types will use. The CLR includes its own file loader, memory manager (the garbage col-
lector), security system (code access security), thread pool, and so on. In addition, the CLR
offers an object-oriented programming model that defines what types and objects are and
how they behave.

The Framework Class Library provides an object-oriented API set that all application models
will use. It includes type definitions that allow developers to perform file and network 1/0,
scheduling tasks on other threads, drawing shapes, comparing strings, and so on. Of course,
all of these type definitions follow the programming model set forth by the CLR.

Microsoft has actually released three versions of the .NET Framework:

® The NET Framework version 1.0 shipped in 2002 and included version 7.0 of
Microsoft’s C# compiler.

m The NET Framework version 1.1 shipped in 2003 and included version 7.1 of
Microsoft’'s C# compiler.

® The .NET Framework version 2.0 shipped in 2005 and included version 8.0 of
Microsoft's C# compiler.

This book focuses exclusively on the .NET Framework version 2.0 and Microsoft's C# com-
piler version 8.0. Since Microsoft tries to maintain a large degree of backward compatibility
when releasing a new version of the .NET Framework, many of the things [discuss in this
book do apply to earlier versions, but I have not made any attempts to address things that are
specific to earlier versions.

Introduction 3

Version 2.0 of the NET Framework includes support for 32-bit x86 versions of Windows as
well as for 64-bit x64 and 1A64 versions of Windows. A “lite” version of the .NET Framework,
called the NET Compact Framework, is also available for PDAs (such as Windows CE) and
appliances (small devices). On December 13, 2001, the European Computer Manufacturers
Association (ECMA) accepted the C# programming language, portions of the CLR, and por-
tions of the FCL as standards. The standards documents that resulted from this has allowed
other organizations to build ECMA-compliant versions of these technologies for other CPU
architectures as well as other operating systems. Actually, much of the content in this book is
about these standards, and therefore, many will find this book useful for working with any
runtime/library implementation that adheres to the ECMA standard. However, this book focuses
specifically on Microsoft’s implementation of this standard for desktop and server systems.

Microsoft Windows Vista ships with version 2.0 of the NET Framework, but earlier versions
of Windows do not. However, if you want your .NET Framework application to run on earlier
versions of Windows, you will be required to install it manually. Fortunately, Microsoft does
make a NET Framework redistribution file that you're allowed to freely distribute with your
application.

The .NET Framework allows developers to take advantage of technologies more than any ear-
lier Microsoft development platform did. Specifically, the NET Framework really delivers on
code reuse, code specialization, resource management, multilanguage development, security,
deployment, and administration. While designing this new platform, Microsoft also felt that it
was necessary to improve on some of the deficiencies of the current Windows platform. The
following list gives you just a small sampling of what the CLR and the FCL provide:

m Consistent programming model Unlike today, when commonly some operating system
facilities are accessed via dynamic-link library (DLL) functions and other facilities are
accessed via COM objects, all application services are offered via a common object-
oriented programming model.

m Simplified programming model The CLR seeks to greatly simplify the plumbing and
arcane constructs required by Win32 and COM. Specifically, the CLR now frees the
developer from having to understand any of the following concepts: the registry,
globally unique identifiers (GUIDs), Tunknown, Addref, Release, HRESULTS, and so
on. The CLR doesn’t just abstract these concepts away from the developer; these con-
cepts simply don’t exist in any form in the CLR. Of course, if you want to write a .NET
Framework application that interoperates with existing, non-NET code, you must still
be aware of these concepts.

B Run once, run always All Windows developers are familiar with “DLL hell” versioning
problems. This situation occurs when components being installed for a new application
overwrite components of an old application, causing the old application to exhibit
strange behavior or stop functioning altogether. The architecture of the .NET Frame-
work now isolates application components so that an application always loads the
components that it was built and tested with. 1f the application runs after installation,
the application should always run.

4

Introduction

Simplified deployment Today, Windows applications are incredibly difficult to set up
and deploy. Several files, registry settings, and shortcuts usually need to be created. In
addition, completely uninstalling an application is nearly impossible. With Windows
2000, Microsoft introduced a new installation engine that helps with all of these issues,
butit’s still possible that a company authoring a Microsoft installer package might fail to
do everything correctly. The NET Framework seeks to banish these issues into history.
The .NET Framework components are not referenced by the registry. In fact, installing
most .NET Framework applications requires no more than copying the files to a direc-
tory and adding a shortcut to the Start menu, desktop, or Quick Launch toolbar. Unin-
stalling the application is as simple as deleting the files.

Wide platform reach 'When compiling source code for the NET Framework, the com-
pilers produce common intermediate language (CIL) instead of the more traditional
CPU instructions. At run time, the CLR translates the CIL into native CPU instructions.
Because the translation to native CPU instructions is done at run time, the translation is
done for the host CPU. This means that you can deploy your .NET Framework applica-
tion on any machine that has an ECMA-compliant version of the CLR and FCL running
on it. These machines can be x86, x64, [A64, and so on. Users will immediately appre-
ciate the value of this broad execution if they ever change their computing hardware or
operating system.

Programming language integration COM allows different programming languages to
interoperate with one another. The NET Framework allows languages to be integrated

- with one another so that you can use types of another language as if they were your own.

For example, the CLR makes it possible to create a class in C++ that derives from a class
implemented in Visual Basic. The CLR allows this because it defines and provides a

Common Type System (CTS) that all programming languages that target the CLR must
use. The Common Language Specification (CLS) describes what compiler implementers
must do in order for their languages to integrate well with other languages. Microsoft is
itself providing several compilers that produce code that targets the runtime: C++/CLI,
C#, Visual Basic .NET, and JScript. In addition, companies other than Microsoft and aca-
demic institutions are producing compilers for other languages that also target the CLR.

Simplified code reuse Using the mechanisms described earlier, you can create your
own classes that offer services to third-party applications. This makes it extremely
simple to reuse code and also creates a large market for component vendors.

Automatic memory management (garbage collection) Programming requires great skill
and discipline, especially when it comes to managing the use of resources such as files,
memory, screen space, network connections, database resources, and so on. One of the
most common bugs is neglecting to free one of these resources, ultimately causing the
application to perform improperly at some unpredictable time. The CLR automatically
tracks resource usage, guaranteeing that your application will never leak resources. In
fact, there is no way to explicitly “free” memory. In Chapter 20, “Automatic Memory
Management (Garbage Collection),” I explain exactly how garbage collection works.

Introduction 5

Type-safe verification The CLR can verify that all of your code is type-safe. Type safety
ensures that allocated objects are always accessed in compatible ways. Hence, if a
method input parameter is declared as accepting a 4-byte value, the CLR will detect and
trap attemplts to access the parameter as an 8-byte value. Similarly, if an object occupies
10 bytes in memory, the application can’t coerce the object into a form that will allow
more than 10 bytes to be read. Type salety also means that execution flow will transfer
only to well-known locations (that is, method entry points). There is no way to con-
struct an arbitrary reference to a memory location and cause code at that location to
start executing. Together, these measures ensure type safety, which eliminates many
common programming errors and classic security attacks (for example, exploiting
buffer overruns).

Rich debugging support Because the CLR is used for many programming languages, it
is now much easier to implement portions of your application by using the language
best suited to a particular task. The CLR fully supports debugging applications that
cross language boundaries.

Consistent method failure paradigm One of the most annoying aspects of Windows
programming is the inconsistent style that functions use to report failures. Some func-
tions return Win32 status codes, some functions return HRESULTSs, and some functions
throw exceptions. In the CLR, all failures are reported via exceptions—period. Exceptions
allow the developer to isolate the failure recovery code from the code required to get the
work done. This separation greatly simplifies writing, reading, and maintaining code. In
addition, exceptions work across module and programming language boundaries. And,
unlike status codes and HRESULTS, exceptions can’t be ignored. The CLR also provides
built-in stack-walking facilities, making it much easier to locate any bugs and failures.

Security Traditional operating system security provides isolation and access control

based on user accounts. This model has proven useful but at its core assumes that all

code is equally trustworthy. This assumption was justified when all code was installed
from physical media (for example, CD-ROM) or trusted corporate servers. But with the
increasing reliance on mobile code such as Web scripts, applications downloaded over
the Internet, and e-mail attachments, we need ways to control the behavior of applica-
tions in a more code-centric manner. Code access security provides a means to do this.

Interoperability Microsoft realizes that developers already have an enormous amount

of existing code and components. Rewriting all of this code to take full advantage of the
NET Framework platform would be a huge undertaking and would prevent the speedy
adoption of this platform. So the .NET Framework fully supports the ability for devel-
opers to access their existing COM components as well as call Win32 functions in existing
DLLs.

Users won'’t directly appreciate the CLR and its capabilities, but they will certainly notice the
quality and features of applications that utilize the CLR. In addition, users and your com-
pany’s bottom line will appreciate how the CLR allows applications to be developed and
deployed more rapidly and with less administration than Windows has ever allowed in the past.

6 Introduction

The Development Environment: Microsoft Visual Studio

Visual Studio is Microsoft’s development environment. Microsoft has been working on it for
many years and has incorporated a lot of NET Framework-specific features into it. Like any
good development environment, Visual Studio includes a project manager; a source code edi-
tor; UI designers; lots of wizards, compilers, linkers, tools, and utilities; documentation; and
debuggers. It supports building applications for both the 32-bit and 64-bit Windows plat-
forms as well as for the NET Framework platform. Another important improvement is that
there is now just one integrated development environment for all programming languages
and application types.

Microsoft also provides a .NET Framework SDK. This free SDK includes all of the language com-
pilers, a bunch of tools, and a lot of documentation. Using this SDK, you can develop applica-
tions for the NET Framework without using Visual Studio. You'll just have to use your own
editor and project management system. You also don’t get drag-and-drop Web Forms and Win-
dows Forms building, I use Visual Studio regularly and will refer to it throughout this book.
However, this book is mostly about .NET Framework and C# programming in general, so Visual
Studio isn’t required to learn, use, and understand the concepts I present in each chapter.

The Goal of This Book

The purpose of this book is to explain how to develop applications and reusable classes for

the NET Framework. Specifically, this means that I intend to explain how the CLR works and
the facilities it offers. I'll also discuss various parts of the FCL. No book could fully explain the
FCL—it contains literally thousands of types, and this number is growing at an alarming rate.
So, here I'm concentrating on the core types that every developer needs to be aware of. And

while this book isn’t specifically about Windows Forms, XML Web services, Web Forms, and
50 on, the technologies presented in the book are applicable to all of these application types.

With this book, I'm not attempting to teach you any particular programming language,
although I use the C# programming in order to demonstrate features of the CLR and to access
types in the FCL. I'm sure that you will learn a lot about C# as you go through this book, but
it is not a goal of this book to teach C#. Furthermore, I assume that you are already familiar
with object-oriented programming concepts such as data abstraction, inheritance, and poly-
morphism. A good understanding of these concepts is critical because the CLR offers an
object-oriented programming model, and all of its features are exposed using this paradigm. 1f
you're not familiar with these concepts, I strongly suggest that you first find a book that
teaches these concepts.

Sample Code and System Requirements

The samples presented in this book can be downloaded from http://Wintellect.com. To build
and run the samples, you'll need the .NET Framework 2.0 (and a version of Windows that
supports it) and the NET Framework SDK.

Introduction 7

This Book Has No Mistakes

This section’s title clearly states what I want to say. But we all know that it is a flat-out lie. My
reviewers, editors, and I have worked hard to bring you the most accurate, up-to-date, in-depth,
easy-to-read, painless-to-understand, bug-free information. Even with the fantastic team
assembled, things inevitably slip through the cracks. If you find any mistakes in this book
(especially bugs), I would greatly appreciate it if you would send the mistakes to me at
Je[freyR@Wintellect.com.

Acknowledgments

I couldn’t have written this book without the help and technical assistance of many people. In
particular, I'd like to thank the following people:

m My family The amount of time and effort than goes into writing a book is hard to mea-
sure. All T know is that I could not have produced this book without the support of Kristin
(my wife) and Aidan (my son). There were many times when we wanted to spend time
together but were unable to due to book obligations. Now that the book project is com-
pleted, I really look forward to adventures we will all share together.

B My technical reviewers and editors For this book revision, 1 truly had some fantastic
people helping me. Christophe Nasarre has done just a phenomenal job of verifying my
work and making sure that I'd said everything the best way it could possibly be said. He
has truly had a significant impact on the quality of this book. Also, I'd like to extend a
special thanks to Jamie Haddock. Jamie read the first edition of my book and e-mailed
me numerous suggestions for ways to improve it. I saved all of these and then asked him
to be part of the formal review process while writing the second edition of this book.
Jamie’s contribution is also quite significant. I'd also like to thank Stan Lippman and
Clemens Szyperski for their review and the lively discussions we had. Finally, I'd like to
thank Paul Mehner for his feedback.

B Members of the Microsoft Press editorial team The Microsoft Press people that I had
the most contact with are Devon Musgrave and Joel Rosenthal. Both of them were an
extreme pleasure to work with and made sure that things ran smoothly and did their
best to make my words read good (except for this sentence @). Of course, I'd also thank
Ben Ryan, my acquisitions editor, for ushering the contract through. Finally, I'd also like
to thank other Microsoft Press people who had a hand in this project, including Kerri
Devault, Elizabeth Hansford, Dan Latimer, Patricia Masserman, Bill Myers, Joel Panchot,
Sandi Resnick, and William Teel.

B Wintellectuals Finally, I'd like to thank the members of my extended Wintellect family
for being patient as I took time away from the business to work on this project. In
particular, I'd like to thank Jim Bail, Jason Clark, Paula Daniels, Peter DeBetta, Sara
Faatz, Todd Fine, Lewis Frazer, Dorothy McBay, Jeff Prosise, John Robbins, and
Justin Smith.

8

Introduction

Support

Every effort has been made to ensure the accuracy of this book. Microsolt Press provides
corrections for books through the World Wide Web at the following address:

http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a ques-
tion or issue that you may have, go to:

http://www. micmsoﬂ.com/ mspress/support/ search.asp

I you have comments, questions, or ideas regarding this book, please send them to Microsoft
Press using either of the following methods:

Postal Mail:

Microsolt Press

Attn: CLR Via C# Editor
One Microsolt Way
Redmond, WA 98052-6399

E-Mail:
mspinput@microsoft.com

Please note that product support is not offered through the above mail addresses. For support
information regarding C#, Visual Studio, or the .NET Framework, visit the Microsoft Product
Standard Support Web site at:

http://support.microsoft.com

Contents

Part |

1

2

CLR Basics

The CLR's ExecutionModel., 3
Compiling Source Code into Managed Modulesc.......... 3
Combining Managed Modules into Assemblies 6
Loading the Common Language Runtime.coviiueiinnnnnn... 8
Executing Your Assembly’s Codecooiiiiiiiiiiiiiii i 11

ILand Verification. 16

UNnsafe Codecvvuvnrurvoeneensneoinmmanssosasosssoesssssnsesned 17
The Native Code Generator Tool: NGen.exec.ouuuiuunnenno... 19
Introducing the Framework Class Library............ 22
The Common Type SYStemottt e 24
The Common Language Specificationo, .. 26
Interoperability with Unmanaged Code................. 30

Building, Packaging, Deploying, and Administering

Applicationsand Types. 33
.NET Framework Deployment Goals cciiiiiieniin... 34
Building TypesintoaModule. 35

RESPONSE RIES 5 i ¢ 00m #1558 500 w050 5191555575 5635k 453005 0 5 m a4 0 36
A Brief Look at Metadata 38
Combining Modules to Form an Assemblyt ..., 44
Adding Assemblies to a Project by Using the Visual Studio IDE. 50
Using the Assembly Linker i . 51
Including Resource Files in the Assembly............................... 53
Assembly Version Resource Information. 54
Version Numbers 56
S T SR P NURNPRE PO vl « Sy or e - 57
Simple Application Deployment (Privately Deployed Assemblies). 58

Simple Administrative Control (Configuration)............... e § s R S E A A 60

