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This book is the outgrowth of an introductory computer science course taught at
Pepperdine University, where the book has been class-tested for five years. The
course, as well as the book, is primarily for majors in computer science who intend
a more in-depth study later, and secondarily for nonmajors who desire a strong
background in computers so that they can deal with them effectively in their cho-
sen fields. The book is designed for a two- or three-semester course.,

] The Physics Model

The approach taken in this book is unigue. The idea is best illustrated by looking at
the typical curriculum in physics, a much older discipline. Like computer science.
physics is a broad area. Over the years a traditional introductory physics course,
which is uniform in content from school to school, has evolved. Physics educators
realize that the first course should teach some problem-solving techniques and give
the student some laboratory experience. In addition, they realize the importance of
introducing the student to all the main areas of study, including mechanics, thermo-
dynamics, electricity, magnetism, and modern phys In-depth mastery of the
subfields of physics is postponed for later courses in which the instructor can
assume that the student has already been exposed to the main concepls.

The traditional design of the introductory computer science sequence lacks the
hre,adl!\ of lhe typical physics sequence. Computer science includes the study of
h ge theory, algorith data structures, architecture, and operating
systems. All.hnugh the recent trend is to incorporate more topics from data struc-
tures into the introductory course, most introductory sequences in computer sci-
ence neglect hard . language theory, archi and operating systems.

The physics curriculum generally recognizes that the concepts of motion,
force, and energy as developed in classical Newtonian mechanics are the founda-
tion on which all the other topics can be presented. However. physics books rarely
present just mechanics—they develop the concepts in mechanics first and then
move on o the other topics.

Similarly, this introductory computer science text begins with algorithm
design in a high-order language, but is not confined to it. Although Pascal pro-
gramming accounts for much of the content, a substantial portion of the text is




devoted to computer organization down to the logic gate level. Students should get
an overall picture of the discipline of computer science in their first year of study.
Indeed, if they do not get a unified picture of the discipline then, when will they
et it later?

E:‘ Summary of Contents

Computers operate at several levels of abstraction; programming in Pascal at a
high level of abstraction is only part of the story. This book presents a unified con-
cept of computer systems based on the level structure of Figure PIL

The book is divided into six parts corresponding to six of the seven fevels of
Figure P.1:

Level T Applications

Level 6 High-order languages

Level 3 Machine

Level 5 Assembly

Level 4 Operating system

Level | Logic pate
Volume | of the two-volume edition covers Levels 7 and 6, and Volume 2 covers
Levels 3, 5, 4, and |, Microprogramming, Level 2, is beyond the scope of this
book.

The text generally presents the levels top-down, from the highest to the low-
est. Level 3, the machine level, is discussed before Level 5, the assembly level, for
pedagogical reasons. In this one instance, it is more natural 10 revert temporarily 1o

a battom-up approach o that the building blocks of the lower level will be in hand
for construction of the higher level.

Level 7 is a single chapter on applications programs. It presents the idea of levels

of ab ion and establishes the for the inder of the book. A few
concepts of relational datab are s an ple of a 1ypical computer
pplication. It is d that students have experience with text editors or word

PIOCESSOrS,

Level 6 consists of 10 chapters on algorithm design and data structures in Pascal
{Chapters 2-11). The wreatmem of Pascal is fairly complete and includes sep
chapters on recursion and poimers. Some topics, such as passing procedures as
parameters, are not included,

Students Jearn best by studying and imitating complete programs, so the
Pascal chapters present the material in a case-study format. Generalizations then
follow the examples. As much as possible, Pascal language features are discussed
in the context of the specific programs.

Two design methodologies are integrated into the Pascal chaplers—stepwise
refinement and 1op-down design. Although these 1wo techniques are closely related
(some would say they are identical), they are treated separately, Stepwise refine-
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ment is a tool for developing a single main program or a singie module, Top-down
design is & tovl for partitioning a program into modules. (In this book, a module 1s
defined as 2 main program or a procedure or & function.) The design methodolo-
gies and associated terminology are simplified to avoid intimidating the student.

Two other opics integrated throughout the Pascal chapters are assertions and
stalement execution counts. Assertions are introduced with nested 1f statements as
a ool for ing about the behavior of ble code. Formal proofs of cor-
rectness are left for a later course, but the book lays the groundwork by giving the
students the ability to formulate a strong assertion. Statement execution counts are
introduced with loops, Given the execution time of a program with a small amount
of data, the student is shown how to estimate the execution time of the program
with a large amount of data. The numerical exercises included in these chapters
give the student a feel for the usefulness of time-complexity resulls,

Level 3 is the machine level. Iis two chapters describe Pep/S, a hypothetical com-
puter designed 1o illustrate computer concepts. The Pep/S computer is a classical

von N hine. The CPU ns an accumulator, an index register, a
base register. a program counter, a stack pointer, and an instruction register. It has
four addressing modes—i liate, dircct, indexed, and stack relative. The Pep/5

operating system, in simulated read-only memory (ROM), can load and execute
programs in hexadecimal format from students’ text files. Students run short pro-
grams on the Pep/S simulator and lean that executing a store instruction to ROM
does not change the memory value,

Stud learn the fund Is of infi I I ion and computer
organization at the bit level. Because a central theme of this book is the relation-
ship of the levels 1o one another, the Pep/S chapters show the relationship between
the ASCIN representation (Level 3) and Pascal variables of type char {Level 6),
They also show the relati ip b wo's pl P fon (Level
3y and Pascal variables of type integer (Level 6).

Level 5 is the assembly level. The text presents the concept of the assembler as a
translator ¢ two levels bly and machine. It inroduces Level 5 sym-
bols and the symbaol table.

The unified approach really pays off here. Chapters 14 and 15 present the
compiler as a translator from a high-order language 10 assembly language. In pre-
vious chapters students learned a specific Level 6 language, Pascal, and a specific
von Neumann machine, Pep/S. These chapters continue the theme of relationships
between the levels by showing the pondence | en {ah assi
statements al Level 6 and load/store instructions at Level 5, (b) loops and 1f state-
ments al Level 6 and branching instructions at Level 5. (c) arrays at Level 6 and
indexed addressing at Level 5, (d) procedure calls at Level 6 and the run-time stack
at Level 5, (e) function and procedure parameters at Level 6 and stack-relative
addressing at Level 5, and (f) case statements at Level & and Jump tables at
Level 5.

The beauty of the unified approach is that the text can implement many of the
examples from the Pascal chapters at this lower level, For example, the run-time
stack illustrated in the recursive examples of an earlier chapter corresponds directly




of

to the hardware stack in Pep/5 main memory. S gain an
the compilation process by lating manually between the two levels,
This approach provides a natural setting for the discussion of central issues in
computer science. For ple, the book p structured | ing at
Level 6 versus the possibility of unstructured programming a1 Level 5. It discusses
the goto controversy and the i prog ing/efficiency radeoff, giving
concrete examples from languages at the two levels. As in the Pascal chapters, the
style of presentation involves drawing general conclusions from specific examples.
Chapter 16, Language Translation Principles, introduces students to computer
science theory. Now that students know intuitively how to translate from a high-
level lang to assembly | ge, we pose the fundamental question underlying
all of computing, What can be automated? The theory naturally fits in here because
students now know what a compiler {an automated translator) must do. They learn
about parsing and finite state machines—deterministic and nondelerministic—in
the context of recognizing Pascal and Pep/5 assembly language tokens. This chap-
ter includes an automatic | b two small | ges, which illustrates
lexical analysis, parsing, and code generation. The lexical analyzer is an imple-
mentation of a finite state machine. What could be a more natural setting for the
theory?

Level 4 consists of two chapters on operating systems. Chapter 17 is a description
of process management. Two sections, one on loaders and another on interrupt
handlers, illustrate the concepts with the Pep/5 operating system. Four instructions
have unimg 1 opeodes that ge software interrupts, The operating sys-
tem stores the process control block of the user's running process on the system
stack while the intermupt service routine interprets the instruction. The classic siate
transition diagram for running and waiting processes in an operating system is thus
reinforced with a specific impl ion of a led process. The chapter
concludes with a description of concurrent processes and deadlocks. Chapter 18§
describes storage management, both main memory and disk memory.

Level 1 uses two chapters to present combinational networks and sequential net-
works, Chapter 19 emphasizes the importance of the mathematical foundation of
computer science by starting with the axioms of boolean algebra. It shows the rela-
tion between boolean algebra and logic gates, then describes some common SSI
and MSI logic devices. Chapter 20 again illustrates the fundamental concept of a
finite state machine through the state i di of sequential circuits. It
concludes with the construction of the data section of the Pep/5 computer. The
same machine model is thus used from the Pascal level to the fogic gate level, pro-
viding a complete, unifying picture of the entire system.

Unitying Themes

In physics, fundamental concepts of motion, force, and energy are developed in
one area of sudy and carried over into other arcas, thus providing a unifying
framework. Unifying themes of this book include abstraction, languages, and finite
state machines,
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The fundamental spaceftime tradeoff is another recurring theme, Execution-
tlime analysis begins with the first while loop in Chapler 5 and continues
throughout the text, The tradeoff occurs in software when the availability of extra
memory may permit a faster algorithm, and in hardware when a two-level network
may require more gates to implement a binary function than a multilevel one.

fee] The Denning Report

This text reflects the recent recommendations of the Denning Report, “Computing
as a Discipline.”! That report identifies the following nine subareas of computer
seience on which the introduciory sequence should be based:

Algorithms and data structures
Programming languages
Architecture

Numeric and symbolic computation
Operating systems

gy and engineering
Databases and information retrieval
Artificial intelligence and robotics

s S

uman p o

This book emphasizes five areas (1, 2, 3, 5, 6), touches on two others (4, 7),
and admits that two areas are beyond its scope (8, 9). Even with the omissions, |
believe that this book achieves the goal enunciated in the Denning Report that the
“introductory sequence should bring out the underlying unity of the field and
should flow from tapic to topic in a pedagogically natural way.”

EHSY AW -

=

Ll Additional Features

Exercises and Programming Assignments In a course based on this book,
1 ig consist of ises, which are handwritten, and probl
which are p ing assi for puter execution. There are an average
of nearly 40 exercises and programming assignments in each chapter. These two
types of assignments reflect the difference between analysis and design. Neglecting
analysis is like trying to teach children to write (design) before they can read {ana-
lyze). At the introductory level, analysis is just as important as design, If students
do not get explicit practice in reasoning about control structures, it is more difficult
for them 1o locate logical errors in the loops they write. After all, debugging is
analysis, not design,

Saftware Tools One goal of this text is to give the student useful software tools.
Accordingly, | have tried 1o present the “best” known algorithms, The sequential

i. Peter ). Denning et al., “Computing as & Discapline.” Computer 22 (February 1989); 63-70. © 1989
by IEEE.



search algorithm installs the search key after the last item in the list, so the loop
has only one test. The binary search algorithm is free of the subtle errors described
by Pattis.” The random number generator is based on that recommended by Park
and Miller.’ The sequential file update algorithm is the balanced-line algorithm as
described by Levy.? The section on sorting uses the taxonomy of sort algorithms
from Merritt.* The version of quick sort is one that executes in time # log n even in
the case when the original array is approximately in order.

I vee in the Curriculum

With such broad coverage, some instructors may wish 1o omit some of the material
when designing their introductory sequence. To provide maximum flexibility for
curriculum design, the model is again the wraditional introductory physics textbook,
which usually contains many topics and applications that may be omitted depend-
ing on the interest of the instructor.

Students are introduced to the concept of an abstract data type as applied to the
stack in Chapter 9. Although other data topics are y included in
the introductory sequence, it is possible to omit half of Chapter 10 (Dynamic
Storage Allocation) and all of Chapter 11 (Data Structures), trading off this depth
for the breadth that comes by studying the lower levels. Later material in the book
is not dependent on these omitted topics, which can be left to a more advanced data
structures course.

In the remainder of the book, Chapters 12-14 must be covered sequentially.
Chapters 15 {Compiling 10 the Assembly Level) and 16 (Language Translation
Principles) can be covered in either order. 1 often skip ahead to Chapter 16 to initi-
ate a large software project, writing an assembler for a subset of Pep/5 assembly
language, so students will have sufficient time to complete it during the semester.
Chapter 20 (Sequential Networks) is obviously dependent on Chapter 19
(Combinational Metworks), but neither depends on Chapter 18 (Storage
Management), which may be omitted. Figure P2, a chapter dependency graph,
summarizes the possible chapter omissions,
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2. Richard E. Pamis, “Textbook Errors in Binary Searching.” ACM SIGCSE Bullerin 20 (February
T0RR): 190-94,

3. Stephen K. Park and Keith W, Miller, “Random Number Generstors: Good Ones Are Hard 10 Find,”
Communications of the ACM 31 (October 1988) 1192-1201.

4. Michael R. Levy, “Modularity and the Sequential File Update Problem,” Communications aof the
ACM 25 (June 1982); 362-67,

5. Susan M. Merrite, “An Inverted T y of Sorting Algorithms,” C, iong af the ACM 28
(Junuary 1985): 96-98,

Figure P.2
A chapter dependency graph.

Ix



X Preface

In addition to possibie chapter omissions, some sections within chapters may
be omitted; examples nclude sections 6.4 (Scope of Identifiers), 6.5 (Random
Numbers), 13.5 (Some Typical Architectures), 15.4 (Data Types at Level 5), 17.3
(Concurrent Processes), and 17.4 {Deadlocks), Selecied topics within sections may
also be omitted: examples include specific algorithms such as matrix multiplication
and recursive merge sort,

] support Materials

Pepl5 Assembler/Simulator Disk Machine-readable source code for the Pep/s
system is available 10 adoplers from the publisher or the author {Bitnet address:
warford@pepvax). The package. complete with assembler and trace facilities, is
written in Pascal and runs on MS-DOS, MacOS, or UNIX systems. (Please spec-
iy which system you use.) The software may be copied freely without express
permission.

Instructor’s Guide An Instructor’s Guide ining solutions 1o ises and
overhead transparency masters of the figures and program listings is available 1o
adopters. Teaching hints and suggestions on how 1o structure the course, based on
classroom experience teaching computer science from a unified perspective, are
also included.

Test Disk The exercises and problems in the book have been combined with addi-
tional test items and are availuble on disk in ASCH format, These can be imported
I your word processor 1o facilitate the printing of exams.

Test Item File A printed Test liem File contains the same questions that are
available on the Test Disk.

Program Disk All the programs from the book and the data files NECESSAry 1o
test the programming problems are available on disk.
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Chapter

Information
Representation

One of the most significant inventions of mankind is the printed word. The words
on this page represent information stored on paper, which is conveyed to you as
you read. Like the printed page, computers have memories for storing information,
The central processing unit (CPU) has the ability to retrieve information from its
memory much like you take information from words on a page.

Some computer terminology is based on this analogy. The CPU reads infor-
mation from memory and writes information into memory. The information itself
is divided into words. In some computer systems large sets of words, usually any-
where from a few hundred to a few thousand, are grouped into pages.

In Pascal, at Level 6, information takes the form of values that you store in a
variable in main memory or in a file on disk. This chapter shows how the computer
stores that information at Level 3. Infi ion ref ion at the hine level
differs significantly from that at the high-order languages level. At Level 3, infor-
mation representation is less human-oriented. Later chapters will discuss informa-
tion rep ion at the intermediate levels, Levels 5 and 4, and show how they
relate to Levels 6 and 3.

- Unsigned Binary Representation

Early computers were electromechanical. That is, all their calculations were per-
formed with moving switches called relays. The Mark I computer, built in 1944 by
Howard H. Aiken of Harvard University, was Sucha hachine. Aiken had procured
financial backing for his project from Thomas 1. Watson, president of International
Business Machines (IBM). The relays in the Mark I computer could compute much
faster than the mechanical gears that were used in adding machines at that time.
Even before the completion of Mark 1, John V. Atanasoff, working at Towa
State University, had finished the construction of an electronic computer to solve
systems of linear equations. In 1941, John W. Mauchly visited Atanasoff’s labora-
tory and in 1946, in collaboration with J. Presper Eckert at the University of
Pennsylvania, built the famous Electronic Numerical Integrator and Calculator

Reading and writing, words and

Information representation at
Level 3

The Mark I computer

The ENIAC computer



800 Chapter 12 information Representation

(ENIAC) ENIAC’s 19,000 vacuum tubes could perform 5000 additions per second
compared to 10 additions per second with the relays of the Mark I Like the
ENIAC, p t-day p are el ic, although their calculations are per-
formed with integrated circuits (1Cs) instead of with vacuum tubes. Each IC con-
tains thousands of transistors similar to the transistors in radios.

@ Binary Storage

Electronic computer memories cannot store numbers and letters directly. They can
only store electrical signals. When the CPU reads information from memory, it is
detecting a signal whose voltage is about equal to that produced by three flashlight
batteries.

Computer memories are designed with a most remarkable property. Each stor-
age location contains either a high-voltage signal or a low-voltage signal, never
anything in between. The storage location is like being pregnant. Either you are or
you are not. There is no halfway.

The word digital means that the signal stored in memory can only have a fixed
number of values. Binary means that only two values are possible. Practically all
computers on the market today are binary. Hence, each storage location contains
either a high voltage or a low voliage. The siaie of each locanon is also described
as being either on or off, or, alternatively, as containing either a | ora 0,

Each individual storage unit is called a binary digit or bir. A bit can be only 1
or 0, never anything else, such as 2, 3, A, or Z This is a fundamental concept.
Every piece of information stored in the memory of a computer, whether it is the
amount you owe on your credit card or your street address, is stored in binary as
I's and 0%,

In practice, the bits in a computer memory are grouped together into cells. A
seven-hit computer, for example, would store its information in groups of seven
bits, as Figure 12.1 shows. You can think of a cell as a group of boxes, each box
containing a | or a 0, nothing else. The first two lines in Figure 12.1{¢) are impos-

E

(a) A seven-bit cell.

[oo[o]oo[o]e]

(b) Some possible values in a
seven-hit cell.

sible because the values in some boses differ from 0 or 1. The last is i

because each box must contain a value. A bit of storage cannot contain nothing.
Different comy have diff bers of bits in each cell, although most

computers these days have eight bits per cell. This chapter will show 1

1
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p
with several different cell sizes to illustrate the general principle.

Information such as numbers and letters must be represented in hinary form 1o
be stored in memory. The representation scheme used to store information is called
a code. This section examines a code for storing unsigned integers. The remainder
of this chapter describes codes for storing other kinds of data. The next chapter
examines codes for storing program commands in memory.

Bl integers

Numbers must be represented in binary form to be stored in a computer's memaory,
The particular code depends on whether the number has a fractional part or is an

(€} Some impossible values in a
seven-bit cell,
Figure 12.1

A seven-bit memory cell in main
memory,



