- :
JAVA G2 FHE

— ERIENREAR
(BSENRR)

l (%) Gary J. Bronson &

BRI HERA

Gary J. Bronson
JAVA for Engineers and Scientists
EISBN: 0-534-38453-6

Copyright © 2003 by Brooks/Cole, a division of Thomson Learning.

Original language published by Thomson Learning (a division of Thomson Learning Asia Pte Ltd). All Rights

reserved.

FEFRR B HRHRE S HRERNR. JTH, BEBR.

Tsinghua University Press is authorized by Thomson Learning to publish and distribute exclusively this English
language reprint edition. This edition is authorized for sale in the People’s Republic of China only (excluding Hong
Kong, Macao SAR and Taiwan). Unauthorized export of this edition is a violation of the Copyright Act. No part of
this publication may be reproduced or distributed by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

FIELHER R BRHRE S HREARNEE R EHRAE MK ERET. KRANREPEARINERA
TEFATREE. RIS ITEEX EPEAGEHEK) 818, REFHE W SN ERBBERT A
RENIRE L BEIFT, AELER T BRI EAT EBREFAIS .

IR TR EEEREGREIEES EF: 01-2003-4325
AHHMWARERFHEEMABEHRE, TIREETSBHE.

B BERS B (CIP)#IE

JAVA 4 #2 [F #—— [) TR FEL % A R=JAVA for Engineers and Scientists / (32) #i Bi#2(Gary J. Bronson)3.
—RmE. — Ikl HEKFEHRE, 2003

ISBN 7-302-07271-X

LJ LA HLJAVA B F—EAF®—%3 IV TP312

rh B R4 B 4508 CIP U8 £ -(2003) 58 089613 &

H R & WERKEHRR s H JEREEEREEHRNE
http://www. tup. com. cn [. 100084
R #Hl: 010-62770175 EFRRE: 010-62776969
AT W
AR TV
Hmiait: ARF

B Rl LTI RE BN

¥® 1T & LFEERIT

& 17 & BESEREIRRATH

%, 185X 260 EP¥E. 46.25 . 1183 FF

M %:20034F 11 A 1A 20034 11 A% 1 KEPRY
&, ISBN 7-302-07271-X/TP - 5278
B 8. 1~3000
£ #:78.007

Preface

Java™ is rapidly emerging as one of the preeminent applications languages for Windows®
-based systems. A major reason is that Java is a true object-oriented language that now provides a
complete set of visual objects that can easily be assembled into a working graphical user interface
(GUI—pronounced goo-eey) and a complete set of input/output and mathematical classes.

From both a teaching and learning viewpoint, Java requires familiarity with four elements, all of
which are required for object-oriented graphical-based programming. These are:

e The concept of object-oriented program class code

¢ The visual objects required in creating a graphical user interface

e The input, output, and mathematical classes required for creating engineering and scientific

programs

e The concept of event-based programming, where the user, rather than the programmer,

determines the sequence of operations to be executed.

The major objective of this textbook is to introduce each of these elements, within the context of
sound programming principles, in a manner that is accessible to the beginning programmer. Its
purpose is both to provide you with the tools, techniques, and understanding necessary to create and
maintain Java programs as well as to prepare a solid foundation for more advanced work. Thus, the
basic goal of this text is that all topics be presented in a clear and unambiguous manner appropriate to
a student taking an introductory course in Java programming.

In using this text, no prerequisites are assumed. The large numbers of examples and exercises in
the text are drawn from basic engineering and scientific disciplines and are appropriate to an
introductory language-based course.

Distinctive Features

Writing Style

I firmly believe that for a textbook to be useful it must provide a clearly defined supporting role
to the leading role of the professor. Once the professor sets the stage, however, the textbook must
encourage, nurture, and assist the student in acquiring and owning the material presented in class. To
do this, the text must be written in a manner that makes sense to the student. Thus, first and foremost,
I feel that the writing style used to convey the concepts presented is the most important and
distinctive aspect of the text.

Flexibility

To be an effective teaching resource, this text is meant to provide a flexible tool that each
professor can use in a variety of ways depending on how many programming concepts and
programming techniques are to be introduced in a single course and when they are to be introduced.
This is accomplished by partitioning the text into five parts and providing a varied number of Chapter
Supplements that contain enrichment and breadth material.

Part One presents the fundamental object-oriented structure and procedural elements of Java.

o]l JAVA for Ensineers and Scientists

Additionally, both keyboard and dialog-based data entry are presented. This permits an early
introduction of the swing package of visual objects as well as providing a firm grounding in basic
Java Development Kit (JDK) techniques. A

Once Part One is completed, the material in Parts Two, Three, Four, and Five are
interchangeable. For example, in a more traditional introduction to programming type of course, Part
One would be followed by Chapter 14 (File I/O) and Part Two, Array and String Reference Types.
However, if a requirement is that the course must emphasize class design and development, Part One
would be followed by Part Three. In a third instance, if the course is to have a more visual and
GUI-based slant, Part One can just as easily be followed by Part Four. In each of these cases, a
“pick-and-choose” approach to course structure can be implemented. This flexibility of topic
introduction is illustrated by the following topic dependence chart.

Part 1

e

Part 2 Part 3 Part 4 Part5

Software Engineering

Although this is primarily an introduction to Java text, as opposed to a CS1 introduction to
programming book, the text is meant to familiarize students with the fundamentals of software
engineering from both a procedural and object-oriented viewpoint. In most cases, however, the more
general programming aspects are interwoven within the text’s main language component precisely
because the text is meant to introduce and strengthen the why as well as the how.

Applications

Starting with Chapter 2, the majority of chapters contain an Applications section, with an
average of two completed applications per chapter. Each application demonstrates effective problem
solving within the context of a complete program solution. This is done both for method and class
design.

Program Testing

Every single Java program in this text has been successfully entered and executed using Sun®
Java 2.0 (both Versions 1.2 and 1.3). The Brooks/Cole Web site (see Appendix J) provides: all
programs that are included within the text. This will permit students to both experiment and extend
the existing programs and more easily modify them as required by a number of end of section
exercises.

Pedagogical Features

To facilitate the goal of making Java accessible as a first-level course, the following
peda-gogical features have been incorporated into the text.

End-of-Section Exercises
Almost every section in the book contains numerous and diverse skill-builder and programming

Preface oIl »

exercises. Additionally, solutions to selected odd-numbered exercises are provided on the Web site
www.brookscole.com.

Common Programming Errors and Chapter Review
Each chapter provides a section on common programming errors. Additionally, each chapter
contains an end of chapter section that reviews the main topics covered in the chapter.

Chapter Supplement Sections

Given the many different emphases that can be applied in teaching Java, a number of basic and
enrichment topics have been included. These sections vary between such basic material as
understanding bits and bytes, practical material, such as formatting, and theoretical material, such as
insides and outsides. The purpose of these sections is to provide flexibility as to the choice of which
topics to present and the timing of when to present them.

Point of Information Notes

These shaded boxes are primarily meant as a reference for commonly used tasks, for quick
reference, for highlighting professional programming techniques, and to provide additional concept
material.

Appendixes and Supplements

An expanded set of appendixes is provided. These include appendixes on key-words, operator
precedence, Unicode codes, and packages. Additionally, the Web site www.brookscole.com contains
solutions to selected odd-numbered exercises.

Acknowled Gments

This book began as an idea. It became a reality only due to the encouragement, skills, and efforts
supplied by many people. I would like to acknowledge their contributions.

First and foremost, I wish to acknowledge and thank Kallie Swanson, my editor at Brooks/Cole,
for her continuous faith and encouragement that I would complete the text no matter how many
missed deadlines I went through.

As the manuscript was being developed, the skills and efforts of many other people at
Brooks/Cole were required. 1 am very grateful and thank Carla Vera for handling numerous
scheduling and review details that permitted me to concentrate on the actual writing of the text. I
especially wish to express my very deep gratitude to the following individual reviewers: Sedar Kirli,
University of Florida; Rubin H. Landau, Oregon State University; Chi N. Thai, University of Georgia;
Guoliang (Larry) Xue, Arizona State University.

Each of these reviewers supplied extremely detailed and constructive reviews of both the
original manuscript and a number of revisions. Their suggestions, attention to detail, and comments
were extraordinarily helpful as the manuscript evolved and matured through the editorial process.
Any errors that may now appear in the text are clearly and solely my own responsibility. Should you
find any, I would very much like to hear from you through my editor, Kallie Swanson, at
Brooks/Cole.

Special acknowledgement goes to G.J. Borse of Lehigh University for the material presented in
Chapter 15 and the information contained within the Career Choice boxes, which Dr. Borse
graciously permitted me to use from his FORTAN 77 and Numerical Methods for Engineers, Second

o]V e JAVA for En@eers and Scientists

Edition.'

Once the review process was completed, the task of turning the final manuscript into a textbook
again required a dedicated production staff. For this I especially want to thank Kelsey McGee, the
production editor at Brooks/Cole. Kelsey and I have now worked on the majority of my published
books, and her attention to detail and very high standards have helped immensely to improve the
quality of all of my texts. Next, I would like to thank Frank Hubert, the copyeditor, and the team at
The Book Company, especially Dustine Friedman. Once this text moved to the production stage, this
team of people seemed to take personal ownership of the text, and I am very grateful to them.

I would also like to gratefully acknowledge the direct encouragement and support of Fairleigh
Dickinson University. Specifically, this includes the constant encouragement, support, and positive
academic climate provided by my Dean, Dr. David Steele, my Associate Dean, Dr. Ron Heim, and
my Chairperson, Dr. YoungBoem Kim. Without their support, this text could not have been written.

Finally, I deeply appreciate the patience, understanding, and love provided by my wife, friend,
and partner, Rochelle.

Gary Bronson

1 G.J.Borse, FORTAN 77 and Numerical Methods for Engineers, 2nd .Ed, © 1991, Brooks/Cole, an imprint of
Thomson Learning. '

CHAPTER 1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

CHAPTER 2
2.1
2.2
23
2.4
2.5
2.6
2.7
2.8

CHAPTER 3
3.1
3.2
3.3
3.4
35
3.6
3.7
3.8

CHAPTER 4
4.1
42
43
4.4

Contents

PART 1 Fundamentals

Getting Started -+« -+-w e errerresesrmsiim s eerere——————— 3
INtrodUCHION t0 PLOGIAIMMIIIE e+ eresessseessessssrssrsssssssssmsstissrisinssimssesssss st 3
Algorithms, Methods, ANd Classes s wssessessessssesensunssnssssnisninnssssistsisissssscsssanes 12
Constructing @ Java Program « - swsererssssrsssussmmssiussenssesssssussimssemssmsss st sssenes 18
The print() and printin() MEthOds «eoreeerereseersmsmsssnsnsssssnsesasssescussitsisnsiss sttt sassaes 24
Programming Style--- OO OO OO UO OO UU RO TP RRTOPO 28
Creating @ Dialog BOX:« -+ --swssersrssassrssssssssmssstissstess st sttty 32
CommON Programming EITOrs -+« -swsressesssessessimssmtsmsmississssstisss et 37
CRAPLET SUIMIMATY -+++++-sseressovsstomsssrmssssmstssss st e 38
Chapter Supplement: Computer Hardware and SOFLWare «-----+-swssersesrsvenceseaessnnces 39
Values, Variables, and Operations -« - 44
Data Values and Arithmetic OPErations « -« - wssssseusessssmssusticcsenssmsessinsisnsnsissensens 44
Variables and Declarations «+«+-«-sssssresseressesresrastsntenioestiineinisiiiiiti e 58
The final Qualiﬁer .. 72
Developing Methods -+ --cssseessrerssasssinimmssisisssi sttt 77
APPICALIONS ++++vseserssserssseessesssssmmmisrirsssis bbb 84
COMMON Programiming EITOrs -+ s twsserssereressssmrssssssssssisssssissiussins st s 89
Chapter Summary ... 90
Chapter Supplement: Programming EITOrs -+« wtsswesessssssssssssssssussmnminsmnssnsnsssnssensse 92
Assignment and Interactive PAPUE - oseeressessesernscsnss it 97
ASSIZNMENE OPETAIONS ++rreressssessssssssermtssmmissemstissssstss st st 97
Forméted Output .. 1 10
Mathematical Methods -« t+es+rsresresesrrmstimieiiniininitiis sttt sttt 117
Interactive Keyboard INput -« «ssseesessrssssssmsmsemsmrunmseminis st 128
Interactive Dialoginput ... 141
APPLICALIONS w++eessereseersesssivssiamssisssmtest st 153
Common Programming EITOrs s+« seseseesessensenimmmtisisisnstissiisi s senssinensceee 163
Chapter Summary ... 163
Ty 0 (T 2 T PP PP 167
Relational EXPreSSiOns -+ trssessestsseustssississinsmnstsinstisntt sttt 168
The if-elSe STALEIMEIIE oo rrrvssrrrerrorrereserremsttetttii ittt sttt 173
Nested if StALEIMENILS -ooeerrrersrerrreersteseiitttiiiiiiii ittt arsosttiesitstitiiin 183
The SWitCh Statement ... 188

* VI JAVA for Engineers and Scientists
4.5 APPHCALIONS +++vsreesrersessrssmssnssmmsttsetsissit sttt s 192
4.6 Common Programming EITors -« +t-ssetesesssersmssmsristiitst st 200
4.7 Chapter SUIMIMAry s sssssserssesssssssssssssisssssssstitts st sp sttt bbbt 201
4.8 Chapter Supplement: Program Testing -+ ++sssssesesssesressssssssssssssssssissssssssississinsans 203
CHAPTER 5 REPELItioN -+ erserersesmsiiiciiiiiic s 206
5.1 INELOQUGLION -+++++++++rrerrerrrsrrrareersuesrinerrrssssnssssessssnsessneesnessnsesbessesaesnesssessaessssensnssess 206
5.2 The WHhile Statement - cceeroeerreerrreeiitiriiiiiiiiiiiiiiiiiiiiiiisiiciisieiitiiimsiirarressisessaesessssns 209
5.3 INteractive While Loops: -+ +s-rsesssssssrsssssssotimsinstinssisssisisiets st 216
5.4 The fOr StatemeEnt «oc-streeeeecrersecetiotaiiniiitiiiniiiiiiaiiosioritestiiiiieisietersesressreretaessasernsersns 227
5.5 Loop Programming Techniques -+« ssssssesserssssessssusmsessssisnnsnsinsississsisees ceerornes 240
56 The dO-WhilC Statement ... 247
5.7 Common Programmin GeITOrs s -+sssessssssssssreessmsisssisssisississsissessssssscsssscsssneaes 251
5.8 Chapter SUMMAry -+ ssssersserssssinssmernisterntee s bbb e 251
CHAPTER 6 General-Purpose Methods -« erririinniiiiiitiinn it 255
6.1 Method and Parameter DEClarations -« -+t ssesseerressesrsssmssrssesssessissersoesereseassersoseans 255
6.2 Returning a Single Valye +++- - sssesreesrressieniinntinssoisiisiissssessesssonenssssesesasans 267
6.3 APPICALIONS «+++srerrserersmserstsninmititi it s 277
6.4 Variable SCOPE -+ s+ strersrsrssmssieminiititetetei st et 293
6.5 Common Programming Errors -+« - -sssesssessseseeseinstsesiesnincssissisisiossenebineessenssssessssenns 302
6.6 Chapter SUMMAry -+« -+t ssessrssssrsssstininssintetsi sttt snanns cesenes 302
PART 2 Array and String Reference Types
CHAPTER 7 AIFAYS -+ tortesrersrases ettt b e 307
7.1 One-Dimensional ArTays «+ s sssessrseserssssiniinmicisiinsissiiissesssessssissssnsssssssssssssssssnes 308
7.2 Array Initialization -« e e 322
7.3 APPCAHIONS “+erserssnrmrermterntttitt s 329
7.4 ATTAYS S ATGUIMENLS +++teessesrrrsserersmsretitrisetit ittt sttt s ae st s b b es s s e 336
7.5 Common Programming EITOrs -+ ssssresssssssersensusinctsiicisisesisinrsssecsssssssssssassssasssnes 340
7.6 Chapter SUMMAry -+ ++++s+sesssersssssstntniirei ettt se st ss s s e 340
7.7 Chapter Supplement: Search and Sort AIGOrIthms «+-wsssssessssssscisecssensensesseesisenns 341
CHAPTER 8 Multidimensional Arrays -« ettt 358
8.1 TWO - DIMENSIONAL ARRAYS +eeereeerreerersnesunessossiessuessescsnsresssenssscsssesssessesssen 358
8.2 MatrixX OPErations «+ s« +sssrersretsrstnmmiuininitisiiiist ittt sttt et 367
8.3 APPHCALIONS +++eervrreessersserssensssitistis ettt 376
8.4 Common Programming Errors -+ --wesserssersimscstersssimscustsesnssnnninsierossesssiesscssssssnns 389
8.5 Chapter SUMMAry -+« seseseeesresssmastnmniiititiiitit et bbb 389
CHAPTER 9 Strings and Characters - - s tevrririmnininiiiccec e s s 392
9.1 The String Class -+ +s+rseerssessresistnirtiiimiiitiinintetet ettt e sns 392
9.2 String Processing: -« tsreesrsessssisiniisiiinmnisicisrseietssstnssseseeses R 398
9.3 The StringBuffer Class -+ sererresuriiinictieeriiieninineine et aena 410

Contents *VII-

9.4 Applications -++-sserseee- e 419
9.5 Common Programming ErTors =+« sessseessesssrnmetennimininisinciis s enseesseses 430
9.6 Chapter SUMMAry -+ ++++sssersssessssesssnernentsis sttt s 430

CHAPTER 10
10.1

10.2
10.3
104
10.5
10.6
10.7

CHAPTER 11
11.1
11.2
11.3
11.4
11.5
11.6
11.7

CHAPTER 12
12.1

12.2
12.3
12.4
12.5
12.6

CHAPTER 13
13.1

13.2
13.3
13.4
13.5
13.6
13.7

PART 3 Creating Classes

INtrOdUCHION tO ClasSS@S «+« - v rrrerrraramntiiiiiiii e cr e e es s e e eaens 435
Object-Based Programming ... 435
CLASSES *+r v vvvreertereresrnntieininnirettiiiiresttietnsirsetiseenseeneranrencesionssesesesssnssensssnssnnsennennssnnnsns 439
CONSIIUCLOTS *+++e++rreteretrtoertmamtattuierieesstecetnsrassssstnerenesansnnsessesuscessssscrsssesssnnssnsssnssnnsns 449
APPHCALIONS «+vereertmrmerenteimie ittt e 458
Common Programming EITOIS seteerresesterastuniuimnniiuirariivniiniensiiestinsieseocnneecrueensenessss 466
Chapter Summary---------'--i .. 467
Chapter Supp]ement;lnsides AnNd Outsides ++o-ereereeeermererrrmmmmriiniiinaa.n, 468
Additional Class Capabilities ... 471
Memberwise Assignment ... 471
Additional Class FEatures --«--+++++seeerreesrtieerterttirrarisseeeeseerrnnerernisessesseessessnnnnnesssseeses 475
APPLCALIONS ++x-veeererrrrnttreiiieiint e 483
C1ass TNNEIItATICE *+++++evssetrerrrrerttemriitiiiiitiiittreetnierernsnenreresssserenssesssesnnssesssnnnsennnnnns 492
Reference Variables as Class MEmbErs «++«---+++ss=sresrsrerersreessiomernreerenrereaereeeenseesseenas 499
Common Programming EITOrS - eveereseettestmmeimireniiiiiniitieieiinciiernnresntensesiersesenssnssnes 505
Chapter SUMMArY reerseerrersrn e 506

PART 4 Creating Swing-Based GUIs

Visual Programming BasSiCs «+rocortererriir e e 509
Event-Based Programming - s-ssesesiernesininsiniiinnniesinciecscssesessesssesssssnenes 509
Creaing a Swing-Based Window =« teeererimnmninniiesiiisieesessssssssseesesenes 516
Adding a Window-Closing Event Handler -+-++++sesesermrsrssrnveriversvirisereneesssnnionns 520
Addmg a Button Component .. 531
Common Programming EITOrs -+ -+ sssesserisersniassisicniesnsssssssinssesssssnsaoneesie §4()
Chapter SUMMary - stsctstermentti ettt 540
Additional Components and Event Handlers:------------- SRR T T CRP PP PP PP PRR 545
Adding Multiple COmMPONENts -+ +++++++sesersessessmmsniemesniicsisesseesessessrsssssssessssssssonne 545
Text Components For Display L 554
Text Components For Data Entry .. 568
Adding Check Box, Radio Button, and Group Components -++--ssserssrrneienes 579
Keystroke Input Validation ----sssweereeererttieniirrrriic e eese s s areesnnnsnrenses 590
Common Programming EITOrs -+« sessesesrussrrusiresiisessiaceiessesssssessissessssessssmens. 597

Chapter Summary ... 597

s VHI » JAVA for Engineers and Scientists
PART 5 Additional Programming Topics
CHAPTER 14 File i/o ... 601
14.1 Files and Streams .. 601
14.2 Writing and Reading Char Acter_Based Files .. 608
14.3 Writing and Reading Byte_Based Files .. 620
1 4 _4 Applications ... 627
14.5 Random Access Files ... 639
14.6 The File Clasg: -+ ++-resrereressesrsseresseressssoessssiarssesessesesssseneesssassesessssesssessesssssssssesessns 648
14_7 Common Programming Errors ... 653
14.8 Chapter Summary ... 653
14.9 Chapter Supplement: Character and Byte File Storage:«:-:++sss-sesseseeservesisnnsinnene. 657
CHAPTER 15 Numerical Methods ... [660
15.1 Introduction to Root Finding .. 660
15.2 The Biesection Method ... 663
15.3 Reﬁnements {o The Bisection Method ... 668
15_4 The Secant Method ... 677
15.5 Introduction to Numerical Integration .. 680
15.6 The Trapezoidal Riul@ rerecereeeeremariniiiiiciiiiiiiiiiiiiiiiiiiciiesnisstaeicincieactencenensasenes 681
15.7 Simpson’s Rule ... 685
15.8 Common Programming Errors .. 688
15.9 Chapter Summary ... 688
CHAPTER 16 Additionai Capabiilties ... 691
16.1 ADDITIONAL FEATURES #+tstttteteetucttantiiiuciuiensiistiritarernstiiriecsisotsiiostiessraesssaces 691
16.2 Bit Operators 9000080008 a0 00400000000000000000000000E00000000000s00000000000000000000008T0ve0nNErNrREIIETeenararhasennE 694
16.3 Command-Line Arguments .. 699
16'4 Chapter Summary ... 702
APPENDIX A Operator Precedence Tabl@: -« - serererrriiiniiiiiiiiiiniiciciiniien s 704
APPENDIX B Unicode Character Set:«:--«cocrorririmiiiiiiiiiiiiriinins s e s n e e 706
APPENDIX C Compi]ing and Executing a Java Program: == -seremsseniniiii 708
APPENDIX D Obtaining LOCAES v v e 710
APPENDIX E Creating Leading Spaces.. 712
APPENDIXF Creating and Using Packages .. 714
APPENDIXG A Keyboard |nput ClASS -+ v et rrrrsretitrtiiiirn e 716
APPENDix H Appiets ... 721
APPENDIX | Real Number Storage .. 722

APPENDIX J Solutions and SoUICE CodE -+ trerrrreririiiiii e 724

PART 1

Fundamentals

CHAPTER 1
CHAPTER 2
CHAPTER 3
CHAPTER 4
CHAPTER 5
CHAPTER 6

Getting Started

Values, Variables, and Operations
Assignment and Interactive Input
Selection

Repetition

General-Purpose Methods

CHAPTER

1

Getting Started

1.1 Introduction to Programming

1.2 Algorithms, Methods, and Classes

1.3 Constructing a Java Program

1.4 The print() and println() Methods

1.5 Programming Style

1.6 Creating a Dialog Box

1.7 Common Programming Errors

1.8 Chapter Summary

1.9 Chapter Supplement: Computer Hardware and Software

In this chapter, we provide both a brief background on programming languages and a specific
structure that will be used throughout the text for constructing Java programs. Additionally, we
explain the concepts of methods and classes. We then describe two specific methods provided in Java,
print() and println(), which are used within the context of a complete program for displaying data on
a video screen. Finally, we present and use the showMessageDialog() method within the context of a
complete program to construct a simple graphical user interface (GUI).

1.1 Introduction to Programming

A computer is a machine and like other machines, such as an automobile or lawn mower, it must
be turned on and then driven, or controlled, to perform its intended task. In an automobile, for
example, control is provided by the driver, who sits inside and directs the car. In a computer, the
driver is a set of instructions, called a program. More formally, a computer program is a
self-contained set of instructions used to operate a computer to produce a specific result. Another
term for a program or set of programs is software, and we will use both terms interchangeably
throughout the text.

The process of writing a program, or software, is called programming, and the set of instructions
that can be used to construct a program is called a programming language. Available programming
languages come in a variety of forms and types.

¢

Machine Language
At its most fundamental level, the only programs that can actually operate a computer are
machine language programs. Such programs, which are also referred to as executable programs, or

o4 PART 1 Fundamentals

. . . . 1
executables for short, consist of a sequence of instructions composed of binary numbers such as:

11000000 000000000001 000000000010
11110000 000000000010 000000000011

Such machine language instructions consist of two parts: an instruction part and an address part.
The instruction part, which is referred to as the opcode (short for operation code), is usually the
leftmost set of bits in the instruction. It tells the computer the operation to be performed, such as add,
subtract, multiply, and so on. The rightmost bits specify the memory addresses of the data to be used.
For example, assuming that the 8 leftmost bits of the first instruction just listed are the operation code
to add and the next two groups of 12 bits are the addresses of the two operands to be added, this
instruction would be a command to “add the data in memory location 1 to the data in memory
location 2.”* Similarly, assuming that the opcode 111100000 means multiply, the next instruction is a
command to “multiply the data in memory location 2 by the data in memory location 3.”

Assembly Languages

Although each class of computers, such as IBM personal computers and Macintosh computers,
have their own particular machine language, it is very tedious and time consuming to write machine
language programs. One of the first advances in programming was the substitution of wordlike
symbols, such as ADD, SUB, MUL, for the binary opcodes and both decimal numbers and labels for
memory addresses. For example, using these symbols and decimal values for memory addresses, the
previous two machine language instructions can be written as:

ADD 1,2
MUL 2, 3

Programming languages that use this type of symbolic notation are referred to as assembly
languages. Since computers can only execute machine language programs, the set of instructions
contained within an assembly language program must be translated into a machine language program
before it can be executed on a computer. Translator programs that perform this function for assembly
language programs are known as assemblers.,

Assembly Machine
language language
program program

FIGURE 1.1 Assembly Programs Must Be Translated

Low- and High-Level Languages

Both machine-level and assembly languages are classified as low-level languages. This is
because both of these language types use instructions that are directly tied to one type of computer.’
Therefore, an assembly language program is limited to the specific computer type for which the
program is written. These programs do, however, permit using special features of a computer that are
different from other machines.

1 Review the supplement at the end of this chapter if you are unfamiliar with binary numbers.

2 To obtain the address values as decimal numbers, convert the binary values to decimal using the method
presented in the chapter supplement.

3 In actuality, a low-level language is defined for the processor around which the computer is constructed.
These include the Intel microprocessor chip for IBM-type personal computers, Motorola chips for Applebased
computers, and Alpha chips for many Hewlett-Packard Compaq-based computers.

CHAPTER 1 Getting Started *5e

In contrast to low-level languages are languages that are classified as high-level. A highlevel
language uses instructions that resemble written languages, such as English, and can be run on a
variety of computer types, such as an IBM, Apple, or Hewlett-Packard computer. Pascal, Microsoft®
Visual Basic®, C, C++, and Java are all high-level languages. Using Java, an instruction to add two
numbers and multiply by a third number can be written as:

result = (first + second) * third;

Programs written in a computer language (high or low level) are referred to interchangeably as
both source programs and source code. Once a program is written in a high-level language, it must
also, like a low-level assembly program, be translated into the machine language of the computer on
which it will be run. This translation can be accomplished in two ways. A unique feature of Java, as
you will see, is that it uses both translation techniques, one after another.

When each statement in a high-level source program is translated individually and executed
immediately upon translation, the programming language used is called an interpreted language, and
the program doing the translation is called an interpreter.

When all of the statements in a high-level source program are translated as a complete unit
before any one statement is executed, the programming language is called a compiled language. In
this case, the program doing the translation is called a compiler. Both compiled and interpreted
versions of a language can exist, although typically one predominates. For example, although
compiled versions of BASIC do exist, BASIC is predominantly an interpreted language. Similarly,
although interpreted versions of C++ exist, C++ is predominantly a compiled language.

A Java program’s translation is a modification of the traditional process that uses both a
compiler and interpreter. As shown in Figure 1.2, the output of the compilation step is a program in
bytecode format. This bytecode is a machine code that is not geared to a particular computer’s
internal processor but rather to a computer referred to as a Java Virtual Machine (JVM). The Java
Virtual Machine computer is not a physical machine but rather a software program that can read the
bytecode produced by the compiler and execute it.

Source
program

Bytecode files
Libraries

Executing
program

FIGURE 1.2 Translating a Java Program

The computer on which the JVM runs is referred to as the host computer. As shown in F igure
1.2, it is within the host computer’s JVM that the bytecode is finally translated into a machine

°6e PART 1 Fundamentals

language code appropriate to the host computer. Specifically, the JVM is an interpreter that translates
each bytecode instruction, as it is encountered, into a computer-specific machine code that is
immediately executed by the computer.

It is this two-phase translation process that provides Java with its cross-platform capability that
permits each computer, regardless of its internal processor type, to execute the same Java program. It
does this by placing the machine-specific details of the final translation step within the host
computer’s JVM rather than on the computer under which the source code was compiled.

Procedure and Object Orientations

High-level languages are further classified as either procedure oriented or object oriented. In a
procedure-oriented language, the available instructions are used to create selfcontained units referred
to as procedures. The purpose of a procedure is to accept data as input and transform the data in some
manner to produce a specific result as an output. Until the mid-1990s, the majority of high-level
languages were procedure oriented.

Within the past few years, a second orientation referred to as object oriented has taken center
stage. One of the motivations for object-oriented languages was the development of graphical screens
and support for graphical user interfaces (GUIs) capable of displaying multiple windows. In such an
environment, each window on the screen can conveniently be considered an object with associated
characteristics, such as color, position, and size. Using an object approach, a program must first
define the objects it will be manipulating, which includes describing both the general characteristics
of the objects themselves and specific units to manipulate them, such as changing size and position
and transferring data between objects. Java is classified as an object-oriented language.

Application and System Software

Two logical categories of computer programs are application software and system software.
Application software consists of programs written to perform particular tasks required by the users.
Most of the examples in this book would be considered application software.

System software is the collection of programs that must be readily available to any computer
system for it to operate at all. In the early computer environments of the 1950s and 1960s, a user had
to initially load the system software by hand to prepare the computer to do anything. This was done
with rows of switches on a front panel. Those initial hand-entered commands were said to boot the
computer, an expression derived from “pulling oneself up by the bootstraps.” Today, the so-called
bootstrap loader is internally contained in read-only memory (ROM) and is a permanent,
automatically executed component of the computer’s system software.

Additionally, before the 1960s, it was not uncommon for the user to also have to load a separate
set of programs necessary for reading from and writing to the input and output devices. Similarly, it
was the user’s responsibility to find the code that would translate an application program to the
computer’s internal machine language so that it could be executed. Typically, most of these utilities
are now kept on either a hard disk or in memory and are booted into the computer either
automatically when the system is turned on or on command by the user.

Various terms are used by different manufacturers for the collection of system utilities called the
operating system. Often, the system software name ends with OS or DOS (for disk operating system).
Additional tasks handled by modern operating systems include memory, input and output, and
secondary storage management. Many systems handle very large programs, as well as multiple users
concurrently, by dividing programs into segments or pages that are moved between the disk and
memory as needed. Such operating systems create a virtual memory, which appears to be as large as

CHAPTER 1 Getting Started o] o

necessary to handle any job, and a multiuser environment is produced that gives each user the
impression that the computer and peripherals are his or hers alone. Additionally, many operating
systems, including most windowed environments, permit each user to run multiple programs. Such

operating systems are referred to as multitasking systems.
TABLE 1.1 Common Operating System Commands

Task DOS Command UNIX Command
Displays the directory of all files DIR Is
available.
Deletes a specified file or group ERASE or DELETE rm
of files.
Lists the contents of a program TYPE cat
to the monitor.
Prints the contents of a program PRINT Ip or Ipr
to the printer.
Copies a file. COPY cp
Renames a file. RENAME mv
Forces a permanent halt to a CTRL + Break or Del Key, CTRL+Break, or\
running program. CTRL + Z or CTRL + C
Forces a temporary suspension CTRL + S or Pause CTRL + S
of the current operation.
Resumes the current operation CTRL + S CTRL + S
(recover from a CTRL + S).

Most system operations are transparent to the user; that is, they take place internally without
user intervention. However, some operating system commands are provided intentionally for you to
interact directly with the system. The most common of these commands are those that allow the
handling of data files on disk. Some of these are listed in Table 1.1.

Programming Languages

At a very basic level, the purpose of almost all programs is to process data to produce one or more
specific results (Figure 1.3). In a procedure-oriented language, a program is constructed as a series of
one or more sets of instructions, called procedures, that are individually concerned with producing a
result from a set of inputs. Effectively, these languages concentrate on the processing shown in Figure
1.3, with each procedure moving the input data one step closer to the final desired output.

This implies that all computer programming languages that support a procedure orientation must
provide essentially the same capabilities for performing these operations. These capabilities are
provided either as specific instruction types or prepackaged groups of instructions that can be called
to do specific tasks. Prepackaged groups of instructions in procedure-oriented languages are typically
supplied in what are referred to as function libraries. Table 1.2 lists the fundamental set of
instructions pro- vided by Fortran, COBOL, Pascal, C, and C++ for performing input, processing, and
output tasks.

Input
data

Qutput
results

FIGURE 1.3 Basic Program Operations

