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students and younger generations of mathematicians about important the-
ories and recent developments in mathematics. For this purpose, accessible
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troductory courses, collections of survey papers, expository monographs on
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Preface

Riemann introduced in 1851 in his thesis Grundlagen fiir eine allgemeine Theorie
der Functionen einer verdiinderlichen complexen Grisse the surfaces we have now
named after him. In this thesis he set up a new foundation for complex analysis of
one variable and thus completely changed the prevailing perspective on that field.
For example, he pointed out that the natural domain of a holomorphic function
need not be contained in the complex plane C, but lies in general on a Riemann
surface. This groundbreaking work was followed a few years later (1857) by an-
other very influential paper of his, Theorie der Abel’schen Functionen, in which he
developed systematically the topology of Riemann surfaces, discussed integrals of
holomorphic and meromorphic 1-forms and proved the crucial Riemann inequal-
ity in the Riemann-Roch theorem, thereby establishing the equivalence between
compact Riemann surfaces and plane algebraic curves over the complex number
field. Moreover, in order to classify compact Riemann surfaces or rather function
fields of algebraic curves, he introduced the notion of “moduli” for such surfaces,
and for the purpose of solving the Jacobi inversion problem for a general compact
Riemann surface, he developed the theory of (what we now call) Riemann theta
functions. Although analysis played a crucial role, this paper also initiated the al-
gebraic geometry (in particular the birational geometry) of algebraic curves. So
Riemann was fully aware of the rich world of connections between his surfaces
and algebraic curves.

Much has happened since, and both Riemann surfaces and their moduli spaces
have come to assume a central role in several areas in mathematics. The moduli
spaces in question are considered to be among the most important algebraic va-
rieties, but have also a prominent place in string theory. The subject is still very
much vibrant as the focus of current research, with many of its central questions
still being unanswered.

A milestone in the study of moduli spaces of Riemann surfaces was the intro-
duction of Teichmiiller spaces endowed with the action of a mapping class group,
with the orbit space then yielding the moduli space. This view point provided an
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analogy with locally symmetric spaces, which by definition are obtained as orbit
space of symmetric spaces endowed with an action of an arithmetic group. This
analogy, though imperfect, has been very fruitful in the past decades, as it sug-
gested both problems and solutions.

As we mentioned, compact Riemann surfaces can also be regarded as algebraic
curves over the complex numbers. In the past few years, there has been an explo-
sion of work on their tropical counterparts, i.e., algebraic curves over the tropical
semifield. These have appeared in many unexpected topics and make currently a
very active area of study. It turns out that the moduli spaces of tropical curves
also fit into the above analogy, in the sense that these are the orbit spaces of trop-
ical Teichmiiller spaces by outer automorphism groups of free groups. The outer
automorphism groups of free groups are among the most important groups in ge-
ometric group theory, and the tropical Teichmiiller spaces were studied as spaces
of marked metric graphs before the subject of tropical geometry (and its name)
existed.

Given the rich history of Riemann surfaces and their moduli spaces, and their
generalizations, applications and connections with other subjects, it seems help-
ful to provide an accessible and timely introduction to all the above topics, while
emphasizing the underlying connections. The current book is an attempt towards
this goal. It consists of two parts. The first part deals with mapping class groups
of surfaces, Teichmiiller spaces and their applications to moduli spaces of Rie-
mann surfaces, whereas the second part deals with tropical analogues and some
applications in geometric group theory. Though these parts were conceived inde-
pendently, together they cover both basic and essential results in these subjects as
well as some recent developments. Although there exist several works on some of
the above topics, we hope and believe that the nature of the subject justifies our
offering of our own perspective on this wonderful world.

Lizhen Ji
Eduard Looijenga

September 2016
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Part 1

Moduli Spaces of Riemann Surfaces
by Eduard Looijenga

This is the write up of a course I taught at Tsinghua University in the Fall of 2011,
while being supported by the there-based Mathematics Sciences Center.

One can enter the subject via algebraic geometry, complex analysis, (combi-
natorial) topology and even homotopy theory. My aim was not to confine myself
to just one of these approaches, but rather to give the students a sense how they
not only supplement, but sometimes also reinforce each other. That sounds rather
ambitious and so I hasten to add that the course’s content was not only subject to
time constraints, but also to my probable bias and the limitations of my knowl-
edge. Having said that, I believe that the implementation of this philosophy not
only exhibits the intertwined nature mentioned above, but also allows occasionally
for shorter proofs, at least shorter than the ones I found in the literature.

In the version prepared during the course, references were absent. This has
now been remedied, to the extent that I provided them where I believed the text
demanded this. Of course, this does not do the literature justice and the reader is
in this regard probably best served by the references list in the recent book by
Arbarello-Cornalba-Griffiths [1]. This magnum opus of almost a thousand pages
is also an excellent reference for much of the material that is discussed here and I
highly recommend to use it on the side and for further study.

I knew from the outset that this ‘multidisciplinary approach’ would be rather
demanding on the students. But my audience, which even counted a few under-
graduates, proved to be very motivated and gave me plenty of feedback (which
occasionally led to a correction or a more detailed discussion). The course was a
joy to give.

In these notes a surface always means an oriented 2-manifold admitting a
countable base. We denote the unit circle if C of complex numbers of norm 1
by C] .
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1 Mapping class groups and Dehn twists 3

1 Mapping class groups and Dehn twists
Mapping class groups

Let S be a surface. For any subset P C S. We denote by Diff(S, P) the group of
diffeomorphisms of S onto S that are the identity on P (but usually write Diff(S)
when P = @). We write Dift" (S, P) C Diff(S, P) for its identity component—this
is a normal subgroup. Two elements h,h’" € Diff(S) are called isotopic relative to
P if they lie in the same path component of Diff(S, P), in other words, if h~'A’ in
Diff" (S, P).

The group of orientation preserving diffeomorphisms in Diff(S, P), denoted
by Diff* (S, P) C Diff(S, P), contains Diff°(S,P) as a normal subgroup. We call
the quotient Mod(S, P) := Diff* (S, P)/ Diff° (S, P) (which comes endowed with
the discrete topology) the mapping class group of (S,P). As these notions only
depend on the closure of P in §, we may as well assume that P is already closed in
S.

Dehn twists

We now assume P C S closed. The collection of embedded circles in S~ P is acted
on by Diff(S,P). Two embedded circles o, o are said to be isotopic relative to
P if they have the same Diff” (S, P)-orbit. So Mod(S, P) acts on the set of isotopy
classes of embedded circles in S~ P.

An embedded circle & C S~ P leads to a so-called Dehn twist Dy, € Mod(S, P):
let ¢ : (—1,1) x C; — S~ P be an open, orientation preserving embedding such
that a is the image of ¢y and let f : (—1,1) — [0,27] be a smooth function which
is constant 0 on (—1, —%) and constant 27t on (%, 1). Let h: § — S be the identity

outside the image of ¢ and be such that h(¢(t,u)) = ¢ (1, ue” ‘/_—If(')). Thenhisa
diffeomorphism and one can check that its image in Mod(S, P) only depends on the
isotopy class relative to P of ¢. In particular, it does not depend on an orientation
of a. We call this element of Mod(S, P) the Dehn twist associated to o and denote
itby Dg.

Exercise 1.1. Prove that Dy, is trivial when o bounds a disk in § which meets P in
at most one point.

We will be mostly interested in the case when S is a closed surface and P C S is
finite subset. We then call the pair (S, P) a P-pointed surface. We then often write
§¢ for S~ P.If S is connected and g is the genus of S, then we sometimes denote
Mod(S,P) by Mod, p, or if the elements of P have been effectively numbered:
P={pi.....pa}, by Mod, ,..

It can be shown that Mod, p is finitely presented with Dehn twists as genera-
tors. We shall see that Mody 3 is trivial and that Mod; ; = SL(2,7Z).
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Now assume that S is a closed connected surface of genus g and that P is
finite. The Diff" (S, P)-orbits of embedded circles in $° can then be topologically
distinguished: a nonseparating embedded circle o C S° is by definition such that
its complement S \. & connected. That complement is then the interior of a compact
connected surface of genus g — 1 with two boundary components. Otherwise ¢ is
separating and splits S into two connected components §’, 5", each of which has
as its closure a compact subsurface with ¢ as boundary. If the genera of these
surfaces are denoted by g’ and g”, then g = g’ + ¢”. The members of P will divide
themselves in P’ := PNS" and P” := PNS". The diffeomorphism type of a compact
surface with boundary is completely given by its genus and its number of boundary
components and this is still true in the relative situation where the surface has been
equipped with a finite subset in its interior. From this we easily deduce:

Proposition 1.2. The non-separating embedded circles in S° make up a single
orbit under Diff* (S, P) and for a separating embedded circle its Diff* (S, P)-orbit
is characterized by the unordered pair of pairs {(g',P'),(g",P")} defined above.
This gives rise to a corresponding characterization of the Mod(S, P)-conjugacy
classes of Dehn twists.

The notion of a mapping class group does not change if we pass to the topologi-
cal setting: any closed topological surface admits a differentiable structure, and for
(8, P) as above the inclusion Diff* (S, P) C Homeo™ (S, P) induces an isomorphism
on their path component groups Mod(S, P) =, Homeo™ (S,P)/Homeo’ (S, P). This
is even true if we descend to the homotopy category: the natural map from
Mod(S, P) to the group Htp(S,P) of homotopy equivalences (S,P) — (S,P) rel-
ative to P is an isomorphism. That property amounts to a characterization of
Mod(S, P) as a group of outer automorphisms of the fundamental group of S°,
which we describe the next subsection. Before we do so, we mention that there is
an intermediate structure which is quite useful in Teichmiiller theory, namely that
of a quasi-conformal structure. We will not give the definition, but just mention
that the connected component group of the group of automorphisms of that struc-
ture which preserve orientation and fix P pointwise also maps isomorphically to
Mod(S, P).

Fundamental groups and mapping class groups

We will here describe without proof a characterization of a mapping class group
in terms of its (outer) action on the fundamental group. We begin with general dis-
cussion of outer actions of groups.

Recall that given a group 7, the group Aut(m) of group automorphisms of 7 contains
the group Inn(7z) of its inner automorphisms as a normal subgroup. The quotient group
Aut(r)/Inn(x) is called the group of its outer automorphisms and is denoted Out(r). Since
Inn(7) acts trivially on the (co)homology of 7, the group Aut(7) acts on this (co)homology



1 Mapping class groups and Dehn twists 5

always via Out(r). If B C mis a Inn(7r)-invariant subset, in other words, a union conjugacy
classes of 7, then we can form the subgroup Aut(7,B) C Aut(r) of automorphisms which
preserve each conjugacy class in B and as this this contains Inn(x), we also have defined
the quotient group Out(7,B) := Aut(x, B)/Inn(r).

Let X be a path connected space. Its fundamental groupoid my is the category whose
objects are the points of X and for which a morphism from p € X to ¢ € X is a homotopy
class of arcs from p to g. It is a groupoid since every morphism is an isomorphism. The fun-
damental group based at p € X, m(X, p), then appears as the group of 7y -endomorphisms of
p (this presupposes that elements of 7t(X, p) are read from right to left). Given p,q € X, then
by assumption there exists a 7y -morphism y: (X, p) = m(X,¢) and any two such differ by
an element of (X, q). So the resulting isomorphism Out(y) : Out(7(X, p)) = Out(7(X,q))
is independent of the choice of y. We denote by Out(7y ) this common group. Or if we insist
on treating all the points of X on an equal footing: an element of Out(7my ) is the subgroup of
I1pex Out(n(X, p)) of elements whose components are related by the isomorphisms Out(y).
This renders evident the observation that a homotopy equivalence h : X — X induces an el-
ement of w(h) € Out(my ) and that thus is defined a group homomorphism from the group
Htp(X) of homotopy classes of self homotopy equivalences X — X to Out(7my ), to which
one often refers as an outer action (of Htp(X)) on the fundamental group.

Let us return to S, a closed connected oriented surface. If 0 € S is a base point,
then it is well-known that (S, 0) has a (standard) presentation with generators
Olii,...,04g, and relation [0, 0] --- [0, 0] = 1.

The outer action of Diff " (S) on 7ts = 7(S, 0) defines a group homomorphism

Mod(S) — Out(rs).

The theorem alluded to above asserts that for genus g > 0 this is an isomorphism
onto a subgroup Out™*(7g) of Out(ms) of index 2. (The preservation of orienta-
tion can be expressed in terms of 7g, because H*(S) can be understood as group
cohomology: H?(S) = H?*(rms); we give another description below which avoids
this language.) For g = 0, Mod(S) is trivial. The above result implies among other
things that Mod(S) is finitely generated and even finitely presented. We will later
give another proof of this fact (Corollary 7.3).

For a cofinite subgroup of 75 (i.e., a subgroup of finite index), the collection
of its Aut(7ms)-conjugates is finite in number (for 7s is finitely generated) so that
the intersection of these is still cofinite in 7. It is clear that for such an Aut(7g)-
invariant cofinite subgroup 7 of 7g is normal in 7rg and that we have an action of
Aut(ms) on the finite group ms/m. The kernel of this action produces a cofinite
subgroup of Aut(7s) and its intersection with Mod(S) will be cofinite in the latter.
A subgroup of Mod(S) which contains the kernel of such a homomorphism is
called a congruence subgroup of Mod(S). Such a subgroup is clearly cofinite in
Mod(S). It is still an open question whether the converse holds:

Question 1.3 (Grothendieck). Is every cofinite subgroup of Mod(S) a congruence
subgroup?
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We assume P C § finite nonempty and write §° := S~ P as before. We also
assume that when g = 0, |P| > 2 (we will see that Mod(S, P) is trivial otherwise).
Choose o € §°. In order to give a presentation of mge = 7(S°,0), we first number
the points of P so that P := {p,...,pn}. Then we choose for k = 1,...,n, B €
m(8°,0) representing a simple positive loop in S° around p; based at o such that
BuPn—1---Bi is represented by a positive loop which encircles P and bounds a
disk in S. A presentation mg- has now generators Oi.j,..., Qg Bi,..., B, that are
subject to the relation

ﬁnﬁnAI "'Bl[ag-a—g] e [al.agl] = 1.

Since this relation allows us to eliminate f3,, this group is in fact freely generated
by oti1,...,04,.B1, ..., Bu—1. However it has some additional structure: the con-
jugacy class By C ms- of By is invariantly defined as it consists of al/l the simple
positive loops in §° around p; based at o. If we divide the group 7(S°, 0) out by the
normal subgroup generated by By, then we get the fundamental group of $°U{py }.
We put B := B U --UB, and observe that we have an evident map

Mod(S, P) — Out(mse,B).

Another basic result asserts that this map is also an isomorphism. (There is no
orientation issue, for an orientation reversing diffeomorphism maps B to Bl_l,
which differs from B;.) Now consider the exact sequence of groups

1 — Inn(ﬂ'so) =3 Au[(Tl’So.B) = OUt(ﬂSO,B) — 1.

Since 7o has trivial center (it is a free group), we may identify it with its group of
inner automorphisms. The middle term may be identified with Mod(S, P), where
P :=PU {0} and we thus find the Birman exact sequence

| — 1o — Mod(S,P) — Mod(S,P) — 1.

This is in fact also valid when P = @: Mod(S) can be identified with group of
outer automorphisms h of 7(S,0) that, in terms of the above presentation, can be
lifted to an automorphism h of the free group on the generators 011, ..., 0ty which
preserves the conjugacy class of [@,, &g [0, 0 1].

2 Conformal structures and a rough classification

Conformal structures

Let T be a real vector space of dimension two. A conformal structure on T is
an inner product on 7" given up to scalar multiplication. If 7" is endowed with an
orientation, then a conformal structure yields a notion of angle (rotation over an
angle 6 € R/2xnZ is defined) and thus turns 7 into a complex vector space of



