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ABOUT THE COVER

The art on the cover was created by Bill Ralph, a mathematican who uses mod-
e mathematics fo produce visual representations of “dynomicel systems.”
Exomples of dynamical systems in nature indude the weather, blood pressure,
the motions of the planefs, and other phenomena that involve confinual change.
- Such systems, which fend fo be unpredictuble and even chaofic at fimes, are mod-
" elod mathematically using the concopts of composition and iteration of funciions.
The process of creating the cover art starts with o photograph of o viclin. The
color values at each point on the photograph are then converted into numbers
and o parficular function is evaluated ot each of these numbers giving o new

- number at each point of the photograph. The same function is then evaluated at
each of these new numbers. Repeating this process produces a sequence of num-
bers called iterates of the function. The original photograph is then “repainted”
using colors determined by certuin properties of this sequence of iterates and the
mathematical concept of “dimension.” The final image is the result of mingling
- photographic reality with the complex behavior of o dynamical system.
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Infinite sequences and series were introduced briefly in A

Preview of Calculus in connection with Zeno's paradoxes

and the decimal representation of numbers. Their impor-

tance in calculus stems from Newton’s idea of representing

functions as sums of infinite series. For iﬁstonce, in finding

areas he often integrated a function by first expressing it as a series and then inte-

grating each term of the series. We will pursue his idea in Section 11.10 in order

fo integrate such functions as e . (Recall that we have previously been unable to

do this.) Many of the functions that arise in mathematical physics and chemistry,

such as Bessel functions, are defined as sums of series, so it is important to be famil-

iar with the basic concepts of convergence of infinite sequences and series.
Physicists also use series in another way, as we will see in Section 11.12. In study-

ing fields as diverse as optics, special relativity, and electromagnetism, they ano-

lyze phenomena by replacing a function with the first few terms in the series that

represents if.

1l] 11.1 Sequences

A sequence can be thought of as a list of numbers written in a definite order:
ai, dz, 4z, A4, ..., Ap, ...

The number a, is called the first term, a, is the second term, and in general a,, is the nth
term. We will deal exclusively with infinite sequences and so each term a, will have a
SUCCESSOT An+1. ‘

Notice that for every positive integer n there is a corresponding number a, and so a
sequence can be defined as a function whose domain is the set of positive integers. But we
usually write a, instead of the function notation f(n) for the value of the function at the
number n.

NOTATION - The sequence {a, aa, as, .. .} is also denoted by

{an} o Aa.}

EXAMPLE 1 Some sequences can be defined by giving a formula for the nth term. In the
following examples we give three descriptions of the sequence: one by using the preced-
ing notation, another by using the defining formula, and a third by writing out the terms
of the sequence. Notice that # doesn’t have to start at 1.

n ” n 2 3 4 n
(a) a, = Y s s sy v e
nt+1} | n+1 3°'4°5 n+1

N]»—

{(—1)"(n+1)} (= + 1) { 23 4 5 (=1(n + 1) }
® Gy = ——— T T TR T, e L
3°9 27 81 3"

3[! 3](

701




702 (il CHAPTER 11 INFINITE SEQUENCES AND SERIES

a,
a @qas)
NN

FIGURE 1

SIS S

©) {vn—=3}_, ay=+/n—3.n=3 {0,.1,V2,V3,....Jn—3...}

: nw 31 nir
(d) {cosn—w}, a,,=cos—6—,n>0 {I,%,E,O,...,cos?,..}

EXAMPLE 2 Find a formula for the general term a, of the sequence

3.4 5 6 7
57 2571257 625731257
assuming that the pattern of the first few terms continues.

SOLUTION We are given that
3 4 S 6 7

TS T T YT YT Tes YT 3s
Notice that the numerators of these fractions start with 3 and increase by 1 whenever we
go to the next term. The second term has numerator 4, the third term has numerator 5;in
general, the nth term will have numerator n + 2. The denominators are the powers of 5,
s0 a, has denominator 5”. The signs of the terms are alternately positive and negative, so
we need to multiply by a power of ~1. In Example 1(b) the factor (—1)" meant we
started with a negative term. Here we want to start with a positive term and so we use
(=1)""'or (—1)"*". Therefore,
n+?2
5 n

a, = (—-1)""'

EXAMPLE 3 Here are some sequences that don’t have a simple defining equation.

(a) The sequence {p,}, where p, is the population of the world as of January 1 in the
year n.

(b) If we let a, be the digit in the nth decimal place of the number ¢, then {a,}is a well-
defined sequence whose first few terms are

{7,1,8,2,8,1,8,2,8,4,5,.. .}
(c) The Fibonacci sequence {f,} is defined recursively by the conditions
fi=1 L=1 h=fi+tfis n=3
Each term is the sum of the two preceding terms. The first few terms are
{1,1,2,3,5,8,13,21,.. .}

This sequence arose when the 13th-century Italian mathematician known as Fibonacci
solved a problem concerning the breeding of rabbits (see Exercise 65).

A sequence such as the one in Example 1(a), a, = n/(n + 1), can be pictured either by
plotting its terms on a number line as in Figure 1 or by plotting its graph as in Figure 2.
Note that, since a sequence is a function whose domain is the set of positive integers, its
graph consists of isolated points with coordinates

(1)) (2, a2) (3. a3) e (n, an)



SECTION 11.1 SEQUENCES Il 703

From Figure 1 or 2 it appears that the terms of the sequence a, = n/(n + 1) are
approaching 1 as n becomes large. In fact, the difference

n 1

1_

ay=1 n+1l n+1
0 1 ; 3 ‘; 5? 4 n  can be made as small as we like by taking n sufficiently large. We indicate this by writing
FIGURE 2 1
noopn + 1
In general, the notation
lima, =1L
frpine
means that the terms of the sequence {a,} approach L as n becomes large. Notice that the
following definition of the limit of a sequence is very similar to the definition of a limit of
a function at infinity given in Section 2.6.
[ Definition A sequence {a,} has the limit L and we write
| i
| |
i lima, =1L or a,—L as n—>o |
i n—w |
} if we can make the terms a, as close to L as we like by taking n sufficiently large. |
If lim, .« a, exists, we say the sequence converges (or is convergent). Otherwise,
} we say the sequence diverges (or is divergent). 3
Figure 3 illustrates Definition 1 by showing the graphs of two sequences that have the
limit L.
a, a,
L SRR L i . .
FIGURE 3
Graphs of two
sequences with 5 — 5
lim a,= L "

a—®

111l Compare this definition with Definition 2.6.7.

A more precise version of Definition 1 is as follows.

Definition A sequence {a,} has the limit L and we write

lima,=L or a,— L as n— o

n—o

if for every & > 0 there is a corresponding integer N such that

|an —L| <&  whenever n >N
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Definition 2 is illustrated by Figure 4, in which the terms ay, az, as, . . . are plotted on
a number line. No matter how small an interval (L — &, L + &) is chosen, there exists an
N such that all terms of the sequence from ay.; onward must lie in that interval.
a, a3 & ag L”Nﬂ ALY a, 4 ds ay a;
! A 1
FIGURE 4 0 L-e L L+te

Another illustration of Definition 2 is given in Figure 5. The points on the graph of {a,}
must lie between the horizontal lines y = L + g and y = L — ¢ if n > N. This picture
must be valid no matter how small € is chosen, but usually a smaller ¢ requires a larger N.

y
y=L+e
L .
. y=L—-¢
o '
FIGURE 5 b234 N §
Comparison of Definition 2 and Definition 2.6.7 shows that the only difference between
lim, .. a, = L and lim,_... f(x) = L is that n is required to be an integer. Thus, we have
the following theorem, which is illustrated by Figure 6.
i [3] Theorem If lim,_... f(x) = L and f(n) = a, when n is an integer, then
'w lim,~=a, = L.
L /
g
FIGURE 6 1234 !

In particular, since we know that lim,_... (1/x") = 0 when r > 0 (Theorem 2.6.5),
we have

1
@ lim—=0 if r>0

n—x n

If a, becomes large as n becomes large, we use the notation lim,, .. a, = <. The fol-
lowing precise definition is similar to Definition 2.6.9.

| (5] Definition lim,_...a, = o means that for every positive number M there is an
integer N such that

a,>M whenever n > N

If lim,— a, = =, then the sequence {a,} is divergent but in a special way. We say that
{a,} diverges to .,



