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Preface To Volume I11

This volume deals with quantum field theories that are governed by
supersymmetry, a symmetry that unites particles of integer and half-integer
spin in common symmetry multiplets. These theories offer a possible way
of solving the ‘hierarchy problem,” the mystery of the enormous ratio of
the Planck mass to the 300 GeV energy scale of electroweak symmetry
breaking. Supersymmetry also has the quality of uniqueness that we search
for in fundamental physical theories. There is an infinite number of Lie
groups that can be used to combine particles of the same spin in ordinary
symmetry multiplets, but there are only eight kinds of supersymmetry
in four spacetime dimensions, of which only one, the simplest, could be
directly relevant to observed particles.

These are reasons enough to devote this third volume of The Quantum
Theory of Fields to supersymmetry. In addition, the quantum field theories
based on supersymmetry have remarkable properties that are not found
among other field theories: some supersymmetric theories have couplings
that are not renormalized in any order of perturbation theory; other
theories are finite; and some even allow exact solutions. Indeed, much of
the most interesting work in quantum field theory over the past decade
has been in the context of supersymmetry.

Unfortunately, after a quarter century there is no direct evidence for
supersymmetry, as no pair of particles related by a supersymmetry trans-
formation has yet been discovered. There is just one significant piece
of indirect evidence for supersymmetry: the high-energy unification of
the SU(3), SU(2), and U(1) gauge couplings works better with the extra
particles called for by supersymmetry than without them.

Nevertheless, because of the intrinsic attractiveness of supersymmetry
and the possibility it offers of resolving the hierarchy problem, I and
many other physicists are reasonably confident that supersymmetry will be
found to be relevant to the real world, and perhaps soon. Supersymmetry
is a primary target of experiments at high energy planned at existing

accelerators, and at the Large Hadron Collider under construction at the
CERN laboratory.

Xvi



Preface xvii

After a historical introduction in Chapter 24, Chapters 25-27 present
the essential machinery of supersymmetric field theories: the structure of
the supersymmetry algebra and supersymmetry multiplets and the con-
struction of supersymmetric Lagrangians in general, and in particular
for theories of chiral and gauge superfields. Chapter 28 then uses this
machinery to incorporate supersymmetry in the standard model of elec-
troweak and strong interactions, and reviews experimental difficulties and
opportunities. Chapters 29-32 deal with topics that are mathematically
more advanced: non-perturbative results, supergraphs, supergravity, and
supersymmetry in higher dimensions.

I have made the treatment of supersymmetry here as clear and self-
contained as I could. Wherever possible I take the reader through cal-
culations, rather than just reporting results from the literature. Where
calculations are too lengthy or complicated to be included in a book of
this sort, especially in Chapter 28, I have tried to present simpler versions
that give the reader an idea of the physical issues involved.

I have made a point of including topics here that have generally not been
covered in earlier books, some because they are too new. These include:
the use of holomorphy to study perturbative and non-perturbative radi-
ative corrections; the calculation of central charges; gauge-mediated and
anomaly-mediated supersymmetry breaking; the Witten index; duality;
the Seiberg—Witten calculation of the effective Lagrangian in N = 2 su-
persymmetric gauge theories; supersymmetry breaking by modular fields;
and a first look at the rapidly developing topic of supersymmetry in higher
dimensions, including theories with p-branes.

On the other hand, I have shortened the usual treatment of two topics
that seemed to me to have been well covered in earlier books. One of these
is the use of supergraphs. Many of the previous applications of the super-
graph formalism in studying the general structure of radiative corrections
can now be handled more easily by using the arguments of holomorphy
described in Sections 27.6 and 29.3. The other is supergravity. In Sections
31.1-31.5 T have given a detailed and self-contained treatment of super-
gravity in the weak-field limit, which makes it clear why the ingredients of
supergravity theories — the graviton, gravitino, and auxiliary fields — are
what they are, and which allows us to derive some of the most important
results of supergravity theory, including the formula for the gravitino
mass and for the gaugino masses produced by anomaly-mediated super-
symmetry breaking. In Section 31.6 I have outlined the calculations that
generalize supergravity theory to gravitational fields of arbitrary strength,
but these calculations are so lengthy and unlovely that I was content to
quote other sources for the results. However, in Section 31.7 I have given
a fuller than usual treatment of gravitationally mediated supersymmetry
breaking. I regret that I have not been able to include exciting work of the
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past decade on supersymmetry related to string theory, but string theory
is beyond the scope of this book, and I did not want to report results for
which I had not provided a basis of explanation.

I have given citations both to the classic papers on supersymmetry
and to useful references on topics that are mentioned but not presented
in detail in this book. I did not always know who was responsible for
material presented here, and the mere absence of a citation should not
be taken as a claim that the material presented here is original, but
some of it is. [ hope that I have improved on the original literature
or standard textbook treatments in several places, as for instance in
the proof of the Coleman-Mandula theorem; in the treatment of parity
matrices in extended supersymmetry theories; in the inclusion of new soft
supersymmetry-breaking terms in the minimum supersymmetric standard
model; in the derivation of supercurrent sum rules; and in the proof of
the uniqueness of the Seiberg—Witten solution.

I have also supplied problems for each chapter. Some of these problems
aim simply at providing exercise in the use of techniques described in the
chapter; others are intended to suggest extensions of the results of the
chapter to a wider class of theories.

In teaching a course on supersymmetry, I have found that this book
provides enough material for a one-year course for graduate students. [
intended that this book should be accessible to students who are familiar
with quantum field theory at the level it is presented in the first two
volumes of this. treatise. It is not assumed that the reader has gone
through Volumes I and II, but for the convenience of those fortunate
readers who have done so I use the same notation here, and give cross-
references to material in Volumes I and 11 wherever appropriate.

* k k

I must acknowledge my special intellectual debt to colleagues at the
University of Texas, notably Luis Boya, Phil Candelas, Bryce and Cecile De
Witt, Willy Fischler, Daniel Freed, Joaquim Gomis, Vadim Kaplunovsky,
and especially Jacques Distler. Also, Sally Dawson, Michael Dine, Michael
Duff, Lawrence Hall, Hitoshi Murayama, Joe Polchinski, Edward Witten,
and Bruno Zumino gave valuable help with special topics. Jonathan Evans
read through the manuscript of this volume, and made many valuable
suggestions. For corrections to the first printing of this volume I am
indebted to several colleagues, especially Stephen Adler. Thanks are due
to Alyce Wilson, who prepared the illustrations, to Terry Riley for finding
countless books and articles, and to Jan Duffy for many helps. I am
grateful to Maureen Storey of Cambridge University Press for working to
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ready this book for publication, and especially to my editor, Rufus Neal,
for his continued friendly good advice.

STEVEN WEINBERG
Austin, Texas
May, 1999



Notation

The big issue in choosing notation for a book on supersymmetry is whether
to use a two-component or a four-component notation for spinors. The
standard texts on supersymmetry have opted for the two-component Weyl
notation. I have chosen instead to use the four-component Dirac notation
except in the first stages of constructing the supersymmetry algebra and
multiplets, because I think this will make the book more accessible to those
physicists who work on particle phenomenology and model building. It
would be a pity to see the growth of a separate enclave of supersymmetry
specialists, who communicate well with each other but are cut off by their
notation from the larger community of particle theorists.

There is no great difficulty anyway in converting expressions in four-
component form into the two-component formalism. In the representation
of the Dirac matrices used throughout this book, in which ys is the
diagonal matrix with elements +1, +1, —1, and —1 on the main diagonal,
any four-component Majorana spinor y, (such as the supersymmetry
generator Q,, the superspace coordinate 8,, or the superderivative 2,)
may be written in terms of a two-component spinor y, as

(e
v ( X ) ’
where e is the 2 x 2 antisymmetric matrix with e;3 = +1. The two-
component spinor y, is what in other books is often called y; = s ,
while (ex*), would be called y® A summary of useful properties of

four-component Majorana spinors is given in the appendix to Chapter 26.
Here are some other features of the notation used in this book:

Latin indices i, j, k, and so on generally run over the three spatial
coordinate labels, usually taken as 1, 2, 3. Where specifically indicated,
they run over values 1, 2, 3, 4, with x* = it.

Greek indices g, v, etc. from the middle of the Greek alphabet generally
run over the four spacetime coordinate labels 1, 2, 3, 0, with x° the
time coordinate. Where it is necessary to distinguish between spacetime

XX
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coordinates in a general coordinate system and in a locally inertial system,
indices y, v, etc. are used for the former and g, b, etc. for the latter.

Greek indices a, 8, etc. from the beginning of the Greek alphabet gener-
ally (except in Chapter 24) run over the components of four-component
spinors. To avoid confusion, I depart here from the conventions of Vol-
ume II, and use upper-case letters 4, B, etc. to label the generators of
a symmetry algebra. Components of two-component spinors are labelled
with indices a, b, etc. In particular, four-component supersymmetry gen-
erators are denoted Q,, while two-component generators (the bottom two
components of Q,) are called Q,.

Repeated indices are generally summed, unless otherwise indicated.

The spacetime metric n,, is diagonal, with elements nyy = 22 = 133 =
1, noo = —1.

The d’Alembertian is defined as O = y*'9%/0x*dx" = V* — 92/0¢%, where
V2 is the Laplacian %/dx'dx'.

The ‘Levi-Civita tensor’ €*'? is defined as the totally antisymmetric
quantity with €923 = +1.

Dirac matrices y, are defined so that y,p, + yyyu = 2n,,. Also, y5s =

iyoy1y2y3, and B = iy® = y4. Where explicit matrices are needed, they are
given by the block matrices

o_ [0 1 _.J0 @
PR o) "= = 0]

where 1 is the unit 2 x 2 matrix, 0 is the 2 x 2 matrix with elements zero,
and the components of ¢ are the usual Pauli matrices

01 0 —i 1 0
w=(1 o) m=(0 ) m=(0 )

We also frequently make use of the 4 x 4 block matrices

_[1 O _le O
BElo -1 ] “Tlo e’

where e is again the antisymmetric 2 X 2 matrix ig;. For instance, our phase
convention for four-component Majorana spinors s may be expressed as
s*=—fyses.

The step function 8(s) has the value +1 for s > 0 and 0 for s < 0.

The complex conjugate, transpose, and Hermitian adjoint of a matrix
or vector A are denoted A°, AT, and AT = A'T, respectively. We use
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an asterisk * for the Hermitian adjoint of an operator or the complex
conjugate of a number, except where a dagger 1 is used for the transpose of
the matrix formed from the Hermitian adjoints of operators or complex
conjugates of numbers. +H.c. or +cc. at the end of an expression
indicates the addition of the Hermitian adjoint or complex conjugate of

the foregoing terms. A bar on a four-component spinor u is defined by
= u
u=u'p.

Units are used with % and the speed of light taken to be unity. Throughout
—e is the rationalized charge of the electron, so that the fine structure
constant is & = e?/4n ~ 1/137. Temperatures are in energy units, with the
Boltzmann constant taken equal to unity.

Numbers in parenthesis at the end of quoted numerical data give the
uncertainty in the last digits of the quoted figure. Where not otherwise
indicated, experimental data are taken from ‘Review of Particle Physics,’
The Particle Data Group, European Physics Journal C 3, 1 (1998).
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