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Preface

Up until recently, Riemannian geometry and basic topology were not
included, even by departments or faculties of mathematics, as compulsory
subjects 1n a university-level mathematical education. The standard courses
in the classical differential geometry of curves and surfaces which were given
instead (and still are given in some places) have come gradually to be viewed
as anachronisms. However, there has been hitherto no unanimous agreement
as to exactly how such courses should be brought up to date, that is to say,
which parts of modern geometry shbuld be regarded as absolutely essential to
a modern mathematical education, and what might be the appropriate level
of abstractness of their exposition.

The task of designing a modernized course in geometry was begun in 1971
in the mechanics division of the Faculty of Mechanics and Mathematics of
Moscow State University. The subject-matter and level of abstractaess of its
exposition were dictated by the view that, in addition to the geometry of
curves and surfaces, the following topics are certainly useful in the various
areas of application of mathematics (especially in elasticity and relativity, to
name but two), and are therefore essential: the theory of tensors (including
covariant differentiation of them); Riemannian curvature; geodesics and the
calculus of variations (including the conservation laws and Hamiltonian
formalism); the particular case of skew-symmetric tensors (ie. “forms”)
together with the operations on them; and the various formulae akin to
Stokes’ (including the all-embracing and invariant “general Stokes formula™
in n dimensions). Many leading theoretical physicists shared the mathemati-
cians’ view that it would also be useful to include some facts about manifolds,
transformation groups, and Lie algebras, as well as the basic concepts of
visual topology. It was also agreed that the course should be given in as
simple and concrete a language as possible, and that wherever practicable the
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terminology should be that used by physicists. Thus it was along these lines
that the archetypal course was taught. [t was given more permanent form as
duplicated lecture notes published under the auspices of Moscow State
University as:

Differential Geomerry, Parts I and II, by S. P. Novikov, Division of
Mechanics, Moscow State University, 1972.

Subsequently various parts of the course were altered, and new topics
added. This supplementary material was published (also in duplicated form)
as;

Differential Geometry, Part 111, by S. P. Novikov and A. T. Fomenko,
Division of Mechanics, Moscow State University, 1974,

The present book 1s the outcome of a reworking. re-ordering, and extensive
elaboration of the above-mentioned lecture notes. It is the authors’ view that
it will serve as a basic text from which the essentials for a course in modern
geometry may be easily extracted.

To S. P. Novikov are due the original conception and the overall plan of
the book. The work of organizing the material contained in the duplicated
lecture notes in accordance with this plan was carried out by B. A. Dubrovin,
This accounts for more than half of Part I; the remainder of the book is
essentially new. The efforts of the editor, D. B. Fuks, in bringing the book to
completion, were invaluable.

The content of this book significantly exceeds the material that might be
considered as essential to the mathematical education of second- and third-
year university students. This was intentional: it was part of our plan that
even in Part I there should be included several sections serving to acquaint
(through further independent study) both undergraduate and graduate
students with the more complex but essentially geometric concepts and
methods of the theory of transformation groups and their Lie algebras, field
theory, and the calculus of variations, and with, in particular, the basic
ingredients of the mathematical formalism of physics. At the same time we
strove to minimize the degree of abstraction of the exposition and terminol-
ogy, often sacrificing thereby some of the so-called “generality” of statements
and proofs: frequently an important result may be obtained in the context of
crucial examples containing the whole essence of the matter, using only
elementary classical analysis and geometry and without invoking any
modern “hyperinvariant” concepts and notations, while the result’s most
general formulation and especially the concomitant proof will necessitate a
dramatic increase in the complexity and abstractness of the exposition. Thus
in such cases we have first expounded the result in question in the setting of
the relevant significant examples, in the simplest possible language appro-
priate, and have postponed the proof of the general form of the result, or
omitted it altogether. For our treatment of those geometrical questions more
closely bound up with modern physics, we analysed the physics literature:
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books on quantum field theory (see e.g. [35], [37]) devote considerable
portions of their beginning sections to describing, in physicists’ terms, useful
facts about the most important concepts associated with the higher-
dimensional calculus of variations and the simplest representations of Lie
groups; the books [41], [43] are devoted to field theory in its geometric
aspects; thus, for instance, the book [41] contains an extensive treatment of
Riemannian geometry from the physical point of view, including much useful
concrete material. [t 1s interesting to look at books on the mechanics of
continuous media and the theory of rigid bodies ([42], [44], [45]) for further
examples of applications of tensors, group theory, etc.

In writing this book it was not our aim to produce a “self-contained” text:
in a standard mathematical education, geometry is just one component of the
curriculum; the questions of concern in analysis, differential equations,
algebra, elementary general topology and measure theory, are examined in
other courses. We have refrained from detailed discussion of questions drawn
from other disciplines, restricting ourselves to their formulation only, since
they receive sufficient attention in the standard programme.

In the treatment of its subject-matter. namely the geometry and topology
of manifolds, Part I goes much further beyond the material appropriate to
the aforementioned basic geometry course, than does Part I. Many books
have been written on the topology and geometry of manifolds: however, most
of them are concerned with narrowly defined portions of that subject, are
written in a language (as a rule very abstract) specially contrived for the
particular circumscribed area of interest, and include all rigorous founda-
tional detail often resulting only in unnecessary complexity. In Part Il also we
have been faithful, as far as possible, to our guiding principle of minimal
abstractness of exposition, giving preference as before to the significant
examples over the general theorems, and we have also kept the inter-
dependence of the chapters to a2 minimum, so that they can each be read in
isolation insofar as the nature of the subject-matter allows. One must
however bear in mind the fact that although several topological concepts (for
instance, knots and links, the fundamental group, homotopy groups, fibre
spaces) can be defined easily enough, on the other hand any attempt to make
nontrivial use of them in even the simplest examples inevitably requires the
development of certain tools having no forbears in classical mathematics.
Consequently the reader not hitherto acquainted with elementary topology
will find (especially if he is past his first youth) that the level of difficulty of
Part I is essentially higher than that of Part I; and for this there is no possible
remedy. Starting in the 1950s, the development of this apparatus and its
incorporation into various branches of mathematics has proceeded with
great rapidity. In recent years there has appeared a rash, as it were, of
nontrivial applications of topological methods (sometimes in combination
with complex algebraic geometry) to various problems of modern theoretical
physics: to the quantum theory of specific fields of a geometrical nature (for
example, Yang-Mills and chiral fields), the theory of fluid crystals and
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superfluidity, the general theory of relativity, to certain physically important
nonlinear wave equations {for instance, the Korteweg—de Vries and sine-
Gordon equations); and there have been attempts to apply the theory of
knots and links in the statistical mechanics of certain substances possessing
“long molecules”. Unfortunately we were unable to include these applications
in the framework of the present book, since in each case an adequate
treatment would have required a lengthy preliminary excursion into physics,
and so would have taken us too far afield. However, in our choice of material
we have taken into account which topological concepts and methods are
exploited in these applications, being aware of the need for a topology text
which might be read (given strong enough motivation) by a young theoretical
physicist of the modern school, perhaps with a particular object in view.

The development of topological and geometric ideas over the [ast 20 years
has brought in its train an essential increase in the complexity of the algebraic
apparatus used in combination with higher-dimensional geometrical in-
tuition, as also in the utilization, at a profound level, of functional analysis,
the theory of partial differential equations, and complex analysis; not all of
this has gone into the present book, which pretends to being elementary (and
in fact most of it is not yet contained in any single textbook, and has therefore
to be gleaned from monographs and the professional journals).

Three-dimensional geometry in the large. in particular the theory of convex
figures and its applications, is an intuitive and generally useful branch of the
classical geometry of surfaces in 3-space; much interest attaches in particular
to the global problems of the theory of surfaces of negative curvature. Not
being specialists in this field we were unable to extract its essence in
sufficiently simple and illustrative form for inclusion in an elementary text.
The reader may acquaint himself with this branch of geometry from the
books [1], [4] and [16].

Of all the books on the topology and geometry of manifolds, the classical
works A Textbook of Topology and The Calculus of Variations in the Large, of
Siefert and Threlfall, and also the excellent more modern books [10], [11]
and [12], turned out to be closest to our conception in approach and choice
of topics. In the process of creating the present text we actively mulled over
and exploited the material covered in these books, and their methodology. In
fact our overall aim in writing Part Il was to produce something like a
modern analogue of Seifert and Threlfall's Textbook of Topology. which
would however be much wider-ranging, remodelled as far as possible using
modern techniques of the theory of smooth manifolds (though with simplicity
of language preserved), and enriched with new material as dictated by the
contemporary view of the significance of topological methods, and of the
kind of reader who, encountering topology for the first time, desires to learna
reasonable amount in the shortest possible time. It seemed to us sensible to
try to benefit (more particularly in Part I, and as far as this is possible in a
book on mathematics) from the accumulated methodological experience of
the physicists, that is, to strive to make pieces of nontrivial mathematics more

e e g,
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comprehensible through the use of the most elementary and generally
familiar means available for their exposition (preserving, however, the format
characteristic of the mathematical literature, wherein the statements of the
main conclusions are separated out from the body of the text by designating
them “theorems”, “lemmas”, etc.). We hold the opinion that, in general,
understanding should precede formalization and rigorization. There are
many facts the details of whose proofs have (aside from their validity)
absolutely no role to play in their utilization in applications. On occasion,
where it seemed justified (more often in the more difficult sections of Part Ii)
we have omitted the proofs of needed facts. In any case, once thoroughly
familiar with their applications, the reader may (if he so wishes), with the help
of other sources, easily sort out the proofs of such facts for himself. (For this
purpose we recommend the book [21].) We have, moreover, attempted to
break down many of these omitted proofs into soluble pieces which we have
placed among the exercises at the end of the relevant sections.

In the final two chapters of Part I we have brought together several items
from the recent literature on dynamical systems and foliations, the general
theory of relativity, and the theory of Yang—Mills and chiral fields. The ideas
expounded there are due to various contemporary researchers; however in a
book of a purely textbook character it may be accounted permissible not to
give a long list of references. The reader who graduates to a deeper study of
these questions using the research journals will find the relevant references
there.

Homology theory forms the central theme of Part 111

In conclusion we should like to express our deep gratitude to our
colleagues in the Faculty of Mechanics and Mathematics of M.S.U., whose
valuable support made possible the design and operation of the new
geometry courses; among the leading mathematicians in the faculty this
applies most of all to the creator of the Soviet school of topology, P. S.
Aleksandrov, and to the eminent geometers P. K. Rasevskii and N. V. Efimov.

We thank the editor D. B. Fuks for his great eflorts in-giving the
manuscript its final shape, and A. D. Aleksandrov, A. V. Pogorelov, Ju. F.
Borisov, V. A. Toponogov and V. I. Kuz'minov, who in the course of reviewing
the book contributed many useful comments. We also thank Ja. B. Zel'dovi¢
for several observations leading to improvements in the exposition at several
points, in connexion with the preparation of the English and French editions
of this book.

We give our special thanks also to the scholars who facilitated the task of
incorporating the less standard material into the book. For instance the proof
of Liouville’s theorem on conformal transformations, which is not to be
found in the standard literature, was communicated to us by V. A. Zori¢. The
editor D. B. Fuks simplified the proofs of several theorems. We are grateful
also to O. T. Bogojavlenskii, M. I. Monastyrskii, S. G. Gindikin, D. V.
Alekseevskii, I. V. Gribkov, P. G. Grinevi¢, and E. B. Vinberg.
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Translator’s acknowledgments. Thanks are due to Abe Shenitzer for much
kind advice and encouragement, to several others of my colleagues for
putting their expertise at my disposal, and to Eadie Henry for her excellent
typing and great patience.
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CHAPTER 1

Examples of Manifolds

§1. The Concept of a Manifold

1.1. Definition of a Manifold

The concept of a manifold is in essence a generalization of the idea, first
formulated in mathematical terms by Gauss, underlying the usual procedure
used in cartography (i.e. the drawing of maps of the earth’s surface, or
portions of it).

The reader is no doubt familiar with the normal cartographical process:
The region of the earth’s surface of interest is subdivided into (possibly
overlapping) subregions, and the group of people whose task it is to draw the
map of the region is subdivided into as many smaller groups in such a way
that:

{i) each subgroup of cartographers has assigned to it a particular subregion
(both labelled i, say); and

(ii) if the subregions assigned to two different groups (labelled i and j say)
intersect, then these groups must indicate accurately on their maps the
rule for translating from one map to the other in the common region (i.e.
region of intersection). (In practice this is usually achieved by giving
beforehand specific names to sufficiently many particular points (ie.
land-marks) of the original region, so that it is immediately clear which
points on different maps represent the same point of the actual region.)

Each of these separate maps of subregions is of course drawn on a flat
sheet of paper with some sort of co-ordinate system on it (e.g. on “squared”
paper). The totality of these flat “maps” forms what is called an “atlas” of the
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region of the earth’s surface in question. (It is usually further indicated on
each map how to calculate the actual length of any path in the subregion
represented by that map, i.e. the “scale” of the map is given. However the
basic concept of a manifold does not include the idea of length; i.e. as it is
usually defined, a manifold does not ab initio come endowed with a metric; we
shall return to this question subsequently.)

The above-described cartographical procedure serves as motivation for
the following (rather lengthy) general definition.

1.L.1. Definition. A differentiable n-dimensional manifold is an arbitrary set M
(whose elements we call “points”) together with the following structure on it.
The set M is the union of a finite or countably infinite collection of subsets U,
with the following properties.

(1) Each subset U, has defined on it co-ordinates x}, a =1,..., n (called
local co-ordinates} by virtue of which U, is identifiable with a region of
Euclidean n-space with Euclidean co-ordinates x. (The U, with their co-
ordinate systems are called charts (rather than “maps™) or local co-ordinate
neighbourhoods.)

(i) Each non-empty intersection U, U, of a pair of such subsets of M
thus has defined on it (at least) two co-ordinate systems, namely the
restrictions of (x}) and (xj): it is required that under each of these co-
ordinatizations the intersection U,n U, is identifiable with a region of
Euclidean n-space, and further that each of these two co-ordinate systems be
expressible in terms of the other in a one-to-one differentiable manner. (Thus
if the transition or translation functions from the co-ordinates x; to the co-
ordinates xj and back, are given by

X5 = Xp(Xg, -0y Xp), a=1,...,n "
X;=x5(x}, ..., Xp), a=1,...,n,

then in particular the Jacobian det(éx;/éx5) is non-zero on the region of
intersection.) The general smoothness class of the transition functions for all
intersecting pairs U, U,, is called the smoothness class of the manifold M
(with its accompanying “atlas” of charts U,

Any Euclidean space or regions thereof provide the simplest examples of
manifolds. A region of the complex space C" can be regarded as a region of
the Euclidean space of dimension 2n, and from this point of view is therefore
also a manifold.

Given two manifolds M = J, U, and N =, U,, we construct their
direct product M x N as follows: The points of the manifold M x N are the
ordered pairs (m, n), and the covering by local co-ordinate neighbourhoods is
given by

MXN:UquV
b.q
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where if x} are the co-ordinates on the region U,, and yg the co-ordinates on
V,, then the co-ordinates on the region U, x V, are (x;, y%).

These are just a few (ways of obtaining) examples of manifolds; in the
sequel we shall meet with many further examples.

It should be noted that the scope of the above general definition of a
manifold is from a purely logical point of view unnecessarily wide; it needs to
be restricted, and we shall indeed impose further conditions (see below).
These conditions are most naturally couched in the language of general
topology, with which we have not yet formally acquainted the reader. This
could have been avoided by defining a manifold at the outset to be instead a
smooth non-singular surface (of dimension n) sitvated in Euclidean space of
some (perhaps large) dimension. However this approach reverses the logical
order of things; it is better to begin with the abstract definition of manifold.
and then show that (under certain conditions) every manifold can be realized
as a surface in some Euclidean space.

We recall for the reader some of the basic concepts of general topology.

(1) A topological space is by definition a set X (of “points™) of which
certain subsets, called the open sets of the topological space, are distinguished;
these open sets are required to satisfy the following three conditions: first, the
intersection of any two (and hence of any finite collection) of them shouid
again be an open set; second, the union of any collection of open sets must
again be open; and thirdly, in particular the empty set and the whole set X
must be open.

The complement of any open set is called a closed set of the topological
space.

The reader doubtless knows from courses in mathematical analysis that,
exceedingly general though it is, the concept of a topological space already
suffices for continuous functions to be defined: A map f: X - Y of one
topological space to another is continuous if the complete inverse image
S ~HU) of every open set U < Y is open in X. Two topological spaces are
topologically equivalent or homeomorphic if there is a one-to-one and onto
map between them such that both it and its inverse are continuous.

In Euclidean space R”, the “Euclidean topology” is the usual one, where
. the open sets are just the usual open regions (see Part I, §1.2). Given any
subset 4 = R, the induced topology on A is that with open sets the
intersections A n U, where U ranges over all open sets of R”. (This definition
extends quite generally to any subset of any topological space.)

1.1.2. Definition. The topology (or Euclidean topology) on a manifold M is
given by the following specification of the open sets. In every local co-
ordinate neighbourhood U, the open (Euclidean) regions (determined by the
given identification of U, with a region of a Euclidean space) are to be open in
the topology on M; the totality of open sets of M is then obtained by
admitting as open also arbitrary unions of countable collections of such
regions, i.e. by closing under countable unions.




