g The C#

Bt s Programming
' Language

Second Edition

[22] Anders Hejlsberg Scott Wiltamuth Peter Golde %

fR) (FESChiv)

Revised and Updated for C# 2.
The C#
Programming
Language

|||||||||||||||

'l
b *
Development
Seri

-l

1N
Anders Hejlsberg
Scott Wiltamuth

S CHiE a0 AR I

Z ARl

2~ POSTS & TELECOM PRESS

\

g H (CIP) By

CHRIES . B2 M. T3/ () WHIEMK (Hejlsberg, A) 553

—Jbat: ARMEH A, 2007.8
CHLFRR JE R 55D

ISBN 978-7-115-16228-1
Vol - lli ®. I, CHEE—ERRr—EX V. TP312
wh A [B CIP B A% - (2007) 28 067561 5 '

AL A

Original edition, entitled C# Programming Language, 2™ Edition, 0321334434 by Hejlsberg Anders, Wiltamuth
Scott, Golde Peter, published by Pearson Education, Inc, publishing as Addison Wesley Professional, Copyright

© 2006 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,

without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and POSTS & TELECOMMUNICATIONS

PRESS Copyright © 2007.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in People’s

Republic of China excluding Hong Kong, Macau and Taiwan.

PRFhi \REFMEERA (FEFEPEEFE. RITEINTERMPEARZHE) HE.
A B FENLA Pearson Education (54 & HERER) AR HIRE. TREEFBHE.

S5 SRR A5 2
CHRIZES (F2H) (FEXR)

* & [£] Anders Hejlsberg ~ Scott Wiltamuth Peter Golde

TEmE K

o AR AL B ORAT dbs iR A SR 14 5
k4% 100061 B 315@ptpress.com.cn
it http:/www.ptpress.com.cn

JbmCEE R ED R A PR 2 7] AR
P s BUE LR R AT A
¢ JFA: 800x1000 1/16
- k. 44.75
FH: 963 TF 2007 4 8 A% 1 ki
EN%: 1-3000 At 2007 4 8 HALHTHS 1 IRENR
ZEREFTCES BT 01-2007-1479 5
ISBN 978-7-115-16228-1/TP

EMr: 95.00 JG

EERE ML (010)67132705 EDFEREMLZ: (010)67129223

ABLUBEHEONES . BiEESHSEH, MY CHEVEINTTTE, EEHE S CH# 4R
RBSEUES TERSRE, HERHT C# Qi) BB RPl. AP 2 ity
C# 2.0 T ZEAR, B C#NESEDE. ABE—BHUU CHESHIATTR, 883
C# 1 BSOUMH=, 2 FREXWBE Visual Studio .NET 2002 £ 2003 A& 7589 C# 1.0 {3 4B35E
EOVENFHE, NSRS CH4ENIIASH. K8 BE. AN, 1B0. =8, H¥N
BMAARLZIBEEM, E_IOHEIR C# 2.0 BUIARBAFM, B4E Generics. Bk
CAnonymous Methods) JE&X = (Iterators)\ F5EEIEAI(Partial Type JRIZ=ZEHI(Nullable
Type o 55 2 WRFESE 1 ARBVEDT EF 5 REBULAHFZ0H , FHINESESHRRIIRINTERN
S|, BEfEILE PHBUMMIRIE SRR BRI HEREVERT,

KBIEEYINAIR CHTREIABIZIWKRSR , 5—FEE 2 WENRESFOEE, “iR
Anders & C#” EREHEFRENEIREHIR. A POSEERENE. RIS, 2 c#
EERVENSER,

CHT H JEM 7 L UART, i 1998 1 12 AFFEEM, HEARROE RS, 3
. H NS HRR 2L FmREES, HMEIANNET F&. WBKE, c#lh
T@KMIRE, BECLH B IREF RIEMEHE, ECMA M ISO/IEC #0481 T ik,
52 IR LR EEAFR T, KR TEEL %M.

XE—X CHRIEESHIERSEH. £2BEa =842 B S “C#1.0”7, EFE1
45 18 2, XBH Visual Studio .NET 2002/2003 KA [) C# 1.0 i T 4035 583 (B AR PH# »
B “CH2.07, BLFESS 19 T~5 25 T, fR C# 2.0 BT YE, B4 Generics. B4
757%(Anonymous Methods) %A%, F (Tterators) /s 52 #E2K K (Partial Type) F17% 25 %4 (Nullable
Type) %&; =94 “MIx”, #id T CF5FER (documentation comments), H&5 T C#2.0
i yE M iEYE (lexical and syntactic grammars) %5 P 2

BREANZHT CHEFHEE. C# 1.0 KT BIPABL 2 H Anders Hejlsberg. Peter Golde-
Peter Hallam. Shon Katzenberger. Todd Proebsting 1 Anson Horton. 4k, C# H generic
&1 54T NET i i 51247 (Common Language Runtime) & TR FTEL
Don Syme 1 Andrew Kennedy 371 “Gyro” JRA!, A5HI5 2 iiif 4t Mads Torgersen
G BT o

EXBTERFTARN CHEHMEHE TR AN IREHE. BRI, RITEREEXE
WA, BH —NFRBRI R R, AT KRG KN G B15 3) T #F4:
AWTH i, X EfE BRI

C#—HIF W EBAS 5N BEAAHGENE . BB OCHIHZ —. BRITHEEE
T CHEERE, MABMNBIEE N —F.

Anders Hejlsberg
Scott Wiltamuth
2006 £ 5 H T 7HHER]

m
Contents

PART | C#1.0 1

1 Introduction 3
1.1 Hello World 4
1.2 Program Structure 5
1.3 Types and Variables 7
1.4 Expressions 11
1.5 Statements 14
1.6 Classes and Objects 18
1.7 - “Structs 34
1.8 Arrays 35
1.9 Interfaces 37
1.10 Enums 39
1.11 Delegates 40
1.12 Attributes 42

2 Lexical Structure 45
2.1 Programs 45
2.2 Grammars 45
2.3 Lexical Analysis 47
2.4 Tokens 51
2.5 Preprocessing Directives 61

Contents

3 Basic Concepts 73
3.1 Application Startup 73
3.2 Application Termination 74
3.3 Declarations 75
3.4 Members 77
3.5 Member Access 79
3.6 Signatures and Overloading 86
3.7 Scopes 87
3.8 Namespace and Type Names 93
3.9 Automatic Memory Management 95
3.10 Execution Order 99

4 Types 101
4.1 Value Types 101
4.2 Reference Types 110
4.3 Boxing and Unboxing 112

5 Variables 115
5.1 Variable Categories 115
5.2 Default Values 119
5.3 Definite Assignment 119
5.4 Variable References 133
5.5 Atomicity of Variable References 133

6 Conversions 135
6.1 Implicit Conversions 135
6.2 Explicit Conversions 138
6.3 Standard Conversions 142
6.4 User-Defined Conversions 143

7 Expressions 147
7.1 Expression Classifications 147
7.2 Operators 149
7.3 Member Lookup 156
7.4 Function Members 157

Contents

7.5
7.6
7.7
7.8
7.9
7.10
Zal 1
72
713
7.14
715
7.16

Primary Expressions 170
Unary Operators 193
Arithmetic Operators 198
Shift Operators 207

Relational and Type-Testing Operators 209

Logical Operators

Conditional Logical Operators 218

216

Conditional Operator 220
Assignment Operators 221

Expression 226

Constant Expressions 226
Boolean Expressions 228

Statements 229

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

End Points and Reachability 230

Blocks 232

The Empty Statement 233

Labeled Statements

233

Declaration Statements 234
Expression Statements 236
Selection Statements 237

Iteration Statements

243

Jump Statements 248
The try Statement 255

The checked and unchecked Statements 258

The lock Statement

259

The using Statement 260

Namespaces 263

9
9.2
9.3
9.4
9.5

Compilation Units

Namespace Declarations 264

263

Using Directives 265
Namespace Members 271

Type Declarations

271

Contents

10 Classes 273
10.1 Class Declarations 273
10.2 Class Members 277
10.3 Constants 287
10.4 Fields 290
10.5 Methods 299
10.6 Properties 317
10.7 Events 327
10.8 Indexers 333
10.9 Operators 338
10.10 Instance Constructors 343
10.11 Static Constructors 349
10.12 Destructors 352

11 Structs 355
11.1 Struct Declarations 355
11.2 Struct Members 356
11.3 Class and Struct Differences 357
11.4 Struct Examples 363

12 Arrays 367
12.1 Array Types 367
12.2 Array Creation 369
12.3 Array Element Access 369
12.4 Array Members 369
12.5 Array Covariance 369
12.6 Array Initializers 370

13 Interfaces 373
13.1 Interface Declarations 373
13.2 Interface Members 375
13.3 Fully Qualified Interface Member Names 380
13.4 Interface Implementations 380

Contents

14 Enums 393

15

16

14.1
14.2
14.3
14.4
14.5

Enum Declarations 393

Enum Modifiers 394

Enum Members 394

The System.Enum Type 397
Enum Values and Operations 397

Delegates 399

15.1
15:2
15.3

Delegate Declarations 399
Delegate Instantiation 402
Delegate Invocation 403

Exceptions 407

16.1
16.2
16.3
16.4

Causes of Exceptions 407

The System.Exception Class 408
How Exceptions Are Handled 408
Common Exception Classes 409

17 Attributes 411

18

171
17.2
17.3
17.4
17.5

Attribute Classes 411

Attribute Specification 414
Attribute Instances 420
Reserved Attributes 422
Attributes for Interoperation 428

Unsafe Code 429

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

Unsafe Contexts 429

Pointer Types 433

Fixed and Moveable Variables 436
Pointer Conversions 437

Pointers in Expressions 438

The fixed Statement 446

Stack Allocation 450

Dynamic Memory Allocation 451

Contents

PART Il

C# 2.0 455

19 Introduction to C# 2.0 457

19.1
19.2
19.3
19.4
19.5

Generics 458
Anonymous Methods 463
Iterators 467

Partial Types 471
Nullable Types 472

20 Generics 477

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9

Generic Class Declarations 477
Generic Struct Declarations 488
Generic Interface Declarations 488
Generic Delegate Declarations 490
Constructed Types 491

Generic Methods 498

Constraints 506

Expressions and Statements 517
Revised Lookup Rules 521

20.10 Right-Shift Grammar Changes 533

21 Anonymous Methods 535

211
21.2
213
21.4
21.5
21.6
21.7
21.8
219

Anonymous Method Expressions 535
Anonymous Method Signatures 535
Anonymous Method Conversions 536
Anonymous Method Blocks 537
Outer Variables 538

Anonymous Method Evaluation 541
Delegate Instance Equality 542
Definite Assignment 543

Method Group Conversions 544

21.10 Delegate Creation Expressions 546
21.11 Implementation Example 546

Contents

22 lterators 551

22,1
22.2
22.3
22.4
22.5

Iterator Blocks 551
Enumerator Objects 552
Enumerable Objects 555

The yield Statement 556
Implementation Example 558

23 Partial Types 567

23.1
23.2

Partial Declarations 567
Name Binding 571

24 Nullable Types 573

24.1
24.2
24.3

Nullable Types 573
Conversions 574
Expressions 580

25 Other Features 587

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8

PART I

Property Accessor Accessibility 587
Static Classes 590

Namespace Alias Qualifiers 592
Extern Aliases 596

Pragma Directives 600

Default Value Expression 601
Conditional Attribute Classes 602
Fixed Size Buffers 603

Appendixes 609

A Documentation Comments 611

A1l
A.2
A3
A4

Introduction 611
Recommended Tags 613

Processing the Documentation File 623

An Example 629

Contents

B Grammar 635
B.1 Lexical Grammar 635
B.2 Syntactic Grammar 644
B.3 Grammar Extensions for Unsafe Code 671

Index 675

e

Sehesni

C#1.0

Part |

1. Introduction

C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe program-
ming language. C# has its roots in the C family of languages and will be immediately famil-
iar to C, C++, and Java programmers. C# is standardized by ECMA International as the
ECMA-334 standard and by ISO/IEC as the ISO/IEC 23270 standard. Microsoft’s C# com-
piler for the INET Framework is a conforming implementation of both of these standards.

C# is an object-oriented language, but C# further includes support for component-oriented
programming. Contemporary software design increasingly relies on software components
in the form of self-contained and self-describing packages of functionality. Key to such
components is that they present a programming model with properties, methods, and
events; they have attributes that provide declarative information about the component;
and they incorporate their own documentation. C# provides language constructs to
directly support these concepts, making C# a very natural language in which to create and
use software components.

Several C# features aid in the construction of robust and durable applications: Garbage
collection automatically reclaims memory occupied by unused objects; exception handling
provides a structured and extensible approach to error detection and recovery; and the
type-safe design of the language makes it impossible to have uninitialized variables, to
index arrays beyond their bounds, or to perform unchecked type casts.

C# has a unified type system. All C# types, including primitive types such as int and
double, inherit from a single root object type. Thus, all types share a set of common oper-
ations, and values of any type can be stored, transported, and operated upon in a consistent
manner. Furthermore, C# supports both user-defined reference types and value types, allow-
ing dynamic allocation of objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in a compatible manner,
much emphasis has been placed on versioning in C#'s design. Many programming lan-
guages pay little attention to this issue, and, as a result, programs written in those languages
break more often than necessary when newer versions of dependent libraries are intro-
duced. Aspects of C#'s design that were directly influenced by versioning considerations
include the separate virtual and override modifiers, the rules for method overload res-
olution, and support for explicit interface member declarations.

1.

Introduction

The rest of this chapter describes the essential features of the C# language. Although later
chapters describe rules and exceptions in a detail-oriented and sometimes mathematical
manner, this chapter strives for clarity and brevity at the expense of completeness. The
intent is to provide the reader with an introduction to the language that will facilitate the
writing of early programs and the reading of later chapters.

1.1 Hello World

The “Hello, World” program is traditionally used to introduce a programming language.
Here it is in C#:

using System;

class Hello
{ «
static void Main() {
Console.WriteLine("Hello, World");
}
}

C# source files typically have the file extension .cs. Assuming that the “Hello, World”
program is stored in the file hello.cs, the program can be compiled with the Microsoft
C# compiler using the command line

csc hello.cs

which produces an executable assembly named hello. exe. The output produced by this
application when it is run is

Hello, World

The “Hello, World” program starts with a using directive that references the System
namespace. Namespaces provide a hierarchical means of organizing C# programs and
libraries. Namespaces contain types and other namespaces—for example, the System
namespace contains a number of types, such as the Console class referenced in the pro-
gram, and a number of other namespaces, such as I0 and Collections. A using direc-
tive that references a given namespace enables unqualified use of the types that are
members of that namespace. Because of the using directive, the program can use
Console.WritelLine asshorthand for System.Console.WritelLine.

The Hello class declared by the “Hello, World” program has a single member, the method
named Main. The Main method is declared with the static modifier. Unlike instance
methods, which reference a particular object instance using the keyword this, static
methods operate without reference to a particular object. By convention, a static method
named Main serves as the entry point of a program.

