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1. Introduction

C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe program-
ming language. C# has its roots in the C family of languages and will be immediately famil-
iar to C, C++, and Java programmers. C# is standardized by ECMA International as the
ECMA-334 standard and by ISO/IEC as the ISO/IEC 23270 standard. Microsoft’s C# com-
piler for the INET Framework is a conforming implementation of both of these standards.

C# is an object-oriented language, but C# further includes support for component-oriented
programming. Contemporary software design increasingly relies on software components
in the form of self-contained and self-describing packages of functionality. Key to such
components is that they present a programming model with properties, methods, and
events; they have attributes that provide declarative information about the component;
and they incorporate their own documentation. C# provides language constructs to
directly support these concepts, making C# a very natural language in which to create and
use software components.

Several C# features aid in the construction of robust and durable applications: Garbage
collection automatically reclaims memory occupied by unused objects; exception handling
provides a structured and extensible approach to error detection and recovery; and the
type-safe design of the language makes it impossible to have uninitialized variables, to
index arrays beyond their bounds, or to perform unchecked type casts.

C# has a unified type system. All C# types, including primitive types such as int and
double, inherit from a single root object type. Thus, all types share a set of common oper-
ations, and values of any type can be stored, transported, and operated upon in a consistent
manner. Furthermore, C# supports both user-defined reference types and value types, allow-
ing dynamic allocation of objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in a compatible manner,
much emphasis has been placed on versioning in C#'s design. Many programming lan-
guages pay little attention to this issue, and, as a result, programs written in those languages
break more often than necessary when newer versions of dependent libraries are intro-
duced. Aspects of C#'s design that were directly influenced by versioning considerations
include the separate virtual and override modifiers, the rules for method overload res-
olution, and support for explicit interface member declarations.



1.

Introduction

The rest of this chapter describes the essential features of the C# language. Although later
chapters describe rules and exceptions in a detail-oriented and sometimes mathematical
manner, this chapter strives for clarity and brevity at the expense of completeness. The
intent is to provide the reader with an introduction to the language that will facilitate the
writing of early programs and the reading of later chapters.

1.1 Hello World

The “Hello, World” program is traditionally used to introduce a programming language.
Here it is in C#:

using System;

class Hello
{ «
static void Main() {
Console.WriteLine("Hello, World");
}
}

C# source files typically have the file extension .cs. Assuming that the “Hello, World”
program is stored in the file hello.cs, the program can be compiled with the Microsoft
C# compiler using the command line

csc hello.cs

which produces an executable assembly named hello. exe. The output produced by this
application when it is run is

Hello, World

The “Hello, World” program starts with a using directive that references the System
namespace. Namespaces provide a hierarchical means of organizing C# programs and
libraries. Namespaces contain types and other namespaces—for example, the System
namespace contains a number of types, such as the Console class referenced in the pro-
gram, and a number of other namespaces, such as I0 and Collections. A using direc-
tive that references a given namespace enables unqualified use of the types that are
members of that namespace. Because of the using directive, the program can use
Console.WritelLine asshorthand for System.Console.WritelLine.

The Hello class declared by the “Hello, World” program has a single member, the method
named Main. The Main method is declared with the static modifier. Unlike instance
methods, which reference a particular object instance using the keyword this, static
methods operate without reference to a particular object. By convention, a static method
named Main serves as the entry point of a program.



