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CHAPTER 1
INTRODUCTION

1.1 Historical Background

Metal-matrix composites (MMCs) have been attracting growing
interest. MMCs' attributes include alterations in mechanical behavior;
tensile, compressive, creep, notch resistance, and tribological properties by
the filler phase. Also physical properties; intermediate density, thermal
expansion, and thermal diffusivity can altered [1]. Engineering interests in
aluminum-based metal matrix composites (MMCs) has increased [2].
Among Aluminum alloys, Aluminum-Silicon (Al-Si) alloys are most
versatile materials, comprising 85% to 90% of the total aluminum cast
parts produced for the automotive industry, depending on the Si
concentration in weight percent (wt.%) in the Al-Si alloy systems [3].
Aluminum-silicon alloys supplies a good combination of mechanical
properties and castability and for those reasons, they are widely used in the
automotive and aerospace industry. [4] Silicon increases the fluidity in
aluminum casting alloys and reduces the solidification interval and hot
tears tendencies [4, 5].

Al-Si alloys such as A356 (Al-7Si- 0.3Mg) and A390 (Al-17.0Si-4.5Cu-
0.6Mg) have been commercially used to produce an engine block due to
their high strength over weight ratio [6].

Compared to conventional Al alloys, the Al alloy matrix based composites,
reinforced with ceramic particles have the best density-properties-price
combination. Therefore, it is legitimate to expect that these materials will
substitute for part of conventional materials in mass production, for

example in automotive, as well as in other industries of transport vehicles



[7]. Aluminum-matrix composites are not a single material but a family of
materials whose stiffness, strength, density, thermal and electrical
properties can be tailored. The matrix alloy, reinforcement material,
volume and shape of the reinforcement, location of the reinforcement and

fabrication method can all be varied to achieve required properties [8].

Particulate reinforced MMC’s have recently found special interest because
of their high specific strength and specific stiffness at room or elevated
temperatures. Interest in particulate reinforced aluminum MMCs is mainly
due to easy availability of particles and economic processing technique
adopted for producing them [9]. The particulate reinforcements have been
classified as the by-products from other technologies (e.g., SiC, SiO,,
Al,O,, aluminosilicates, graphite, and fly-ash) and are readily available or
are naturally renewable at affordable cost (e.g., coconut shell char, mica,
palm-kernel shell char, and zircon). Further, the potential nature of these
filler materials is attractive. For example, SiC has good thermal and
chemical stability, both during synthesis and under severe service
conditions, strength, cost (about $13/kg for the particulate), and availability
[1]. Also, Albite is common feldspar ceramic, a mineral aluminosilicate
(NaAlSi;Og) that occurs most widely in acid igneous rocks such as granites
[9 &10]. It's basically consisting of silicates; it is abundantly available in
the earth's crust. Albite ranges from white to dark grey in colour and is
extremely wear resistant, having a Moh hardness of about 6.5, almost
rivaling that of SiC but exceeding that of alumina. It has a low coefficient
of thermal expansion of 2.3 x 10° ¢ [9, 11]. Also low thermal

conductivity (2.8 W.m™.C™") of Albite and density (2.6 g/cm’) which is
much lower than those of SiC (3.1 g/cm”) and alumina (4.0 g/cm”) [9, 11,

12]. These properties make Albite a candidate reinforcement material in
MMCs. Among metal-ceramic combinations, the Al-SiC couple has been

one of the most widely studied systems over the last years [8].
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Continuously and discontinuously reinforced Al/SiC metal matrix
composites (MMCs) are promising modern, light weight materials with
excellent properties, such as: high hardness and strength at ambient and
elevated temperatures, good wear resistance, and high modulus of

elasticity.

Currently, the use of MMCs is limited predominantly to the military and
the aerospace industry. However, the penetration of these materials has
already begun also in civilian applications [7]. With increased SiC
addition, the module of elasticity increases linearly and thermal expansion
decreases. Unfortunately, with increased content of reinforcement the
ductility of the composite is drastically decreased. Tensile and compression
ductility of Al/SiC MMCs are very different. These composites have high
compression strength, but they are very sensitive to tensile load. Therefore,
these materials are appropriate for hot forming in closed dies (die forging,
hot pressing, extrusion etc.) [7]. (Al-SiC) MMC has been studied by large
number of searchers whom save plenty of concerning data. While, there is

a leakage of information about (Al-Albite) MMC.

A great portion of the research efforts is focused on producing the MMCs
by solidification processing, which is likely to be more economical and
relatively simple in comparison with the competing solid processing [2].

Vortex method and forming in semi-solid state (SSM) has been proved as
an advantageous route for producing Al alloys as well as their composites.
Several advantages of semi-solid forming process are proved, the most
important of these, in the view of most technologists today, is the non-
turbulent filling of the die, which results from the high and controllable
viscosity of the semi-solid material. This smooth mold filling eliminates the

air entrapment encountered in the conventional die-casting process and



