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Preface

It was about ninety years ago that GALTON and WATSON, in treating
the problem of the extinction of family names, showed how probability
theory could be applied to study the effects of chance on the development
of families or populations. They formulated a mathematical model, which
was neglected for many years after their original work, but was studied
again in isolated papers in the twenties and thirties of this century.

During the past fifteen or twenty years, the model and its general-
izations have been treated extensively, for their mathematical interest
and as a theoretical basis for studies of populations of such objects as
genes, neutrons, Or COSINIC Iays. The generalizations of the Galton-
Watson model to be studied in this book can appropriately be
called branching processes; the term has become common since its use
in a more restricted sense in a paper by KoLMoGorov and DMITRIEV
in 1947 (see Chapter II). We may think of a branching process as a
mathernatical representation of the development of a population whose
members reproduce and die, subject to laws of chance. The objects may
be of different types, depending on their age, energy, position, or other
factors. However, they must not interfere with one another. This assump-
tion, which unifies the mathematical theory, seems justified for some
populations of physical particles such as neutrons or cosmic rays, but
only under very restricted circumstances for biological populations.

Chapter I studies the original model of GALTON and WATsoN, which
was designed to answer the following question: If a man has probabilities
Pos P1, Pa, ... for having 0, 1, 2, ... sons, if each son has the same prob-
abilities for sons of his own, and so on, what is the probability that the
family will eventually become extinct, and more generally, what is-the
probability of a given number of male descendants in a given generation ?
Chapter IT deals with a natural generalization, where each object may
be one of several types, and Chapter TII carries on the generalization,
so that one can deal with objects described by continuous variables such
as age, energy, etc. The theory is then applied in Chapter IV to some of
the simpler mathematical models for nentron chain reactions. ChapterV
treats the model of GarLToy and WaTsoN in cases where the development
of a family is traced continuously in time, rather than by generations,
and Chapter VI describes the most natural way of treating populations
whese objecis are subject to agiug effects. Finally, Chapter VII describes
a mathematical theory of the clectron-photon cascade, one of the com-
ponents.of cosmic radiation.



VIII Pre ace

In this book, the emphasis is on a systematic development of
the mathematical theory, but I have described briefly the more important
applications, indicating in a general way the weak points of the assump-
tions underlying some of them. The mathematical level of the treatment
varies. I believe that most of Chapters I, II, and V can be mastered by
anyone with a working knowledge of Markov chains and continuous
probability distributions, at the level of FELLER'S Probability Theory
and PARZEN’S Modern Probability Theory, respectively. I hope that such
readers can at least follow the main results in the remainder of the book,
whose detailed reading requires an amount of measure-theoretic prob-
ability about equal to that in KoLMOGOROV’S basic monograph Founda-
tions of Probability Theory, plus a few results from the more advanced
treatises of Doos and LokvE. Occasional use is made of matrix theory,
the theory of analytic functions, and the theory of Fourier and Laplace
integrals.

Although I have tried to give rigorous proofs of the more basic
results, I have not hesitated to include a heuristic proof (so labeled)
when I did not know a rigorous one, or when the length of a rigorous
one seemed out of proportion to its importance.

Thanks are due D.A. DARLING and RUPERT MILLER, who read the
entire manuscript and suggested numerous improvements, and also my
colleague RICHARD BELLMAN, who made many suggestions about the
presentation. I wish to thank my former teacher, S.S. WiLks, who
introduced me to this problem, and J.L. Doos, who encouraged me to
write the book. I appreciate the excellent work of MARGARET WRAY,
who typed several versions of the manuscript, and of ELEANOR HARRIS,
who prepared it for the printer.

I am indebted to The RAND Corporation for support of this work
under a broad research contract with the United States Air Force.

Finally, I want to thank my wife for her patience during the many
evenings when I was busy with this book.

Santa Monica, California T.E. H.
July, 1963
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Chapter I

The Galton-Watson branching process

1. Historical remarks

The decay of the families of men who occupied conspicuous positions in past
times has been a subject of frequent remark, and has given rise to various con-
jectures ... The instances are very numerous in which surnames that were once
common have since become scarce or have wholly disappeared. The tendency is
universal, and, in explanation of it, the conclusion has been hastily drawn that a
rise in physical comfort and intellectual capacity is necessarily accompanied by
diminution in “fertility’’ ... On the other hand, M. ALPHONSE DE CANDOLLE has
directed attention to the fact that, by the ordinary law of chances, a large pro-
portion of families are continually dying out, and it evidently follows that, until
we know what that proportion is, we cannot estimate whether any observed dimi-
nution of surnames among the families whose history we can trace, is or is not a
sign of their diminished ‘fertility "

These remarks of FRANCIS GALTON were prefaced to the solution by
the Reverend H. W. WaTsoN of the ‘“‘problem of the extinction of
families”’, which appeared in 1874!. Not willing to accept uncritically
the hypothesis that distinguished families are more likely to die out than
ordinary ones, GALTON recognized that a first step in studying the hypoth-
esis would be to determine the probability that an ordinary family will
disappear, using fertility data for the whole population. Accordingly,
he formulated the problem of the extinction of families as follows:

Let py, Py, Pg» --- DE the respective probabilities that a man has 0, 1,2, sbn
sons, let each son have the same probability for sons of his own, and so on. What
is the probability that the male line is extinct after » generations, and more gener-
ally what is the probability for any given number of descendants in the male line
in any given generation ?

WATSON’s ingenious solution of this problem used a device that has
been basic in most subsequent treatments. However, because of a purely
algebraic oversight, WaTsoN concluded erroneously that every family
will die out, even when the population size, on the average, increases
from one generation to the next. i

Although we shall not be concerned with questions of demography,
let us note at this point that GALTON (1891) studied statistics on the
reproductive rates of English peers, coming to the interesting conclusion

1 Warson and GALTON (1874). Essentially the same discussion was given in an
appendix to GALTON's book (1889). GaLTON originally posed the problem in the
pages of the Educational Times.

Harris, Branching Procésses 1



2 Chapter I. The Galton-Watson branching process

that one factor in lowering the rates was the tendency of peers to marry
heiresses. An heiress, coming from a family with no sons, would be
expected to have, by inheritance, a lower-than-ordinary fertility, and
GALTON's data bore out this expectation.

The mathematical model of GAaLToN and WATSON (we shall call it
" the Galton-Waison process) appears to have been neglected for many
years after its creation, the next treatment known to the author being
that of R. A. FIsHER (1922, 19303, 1930b). FI1sHER used a mathematical
model identical with that of GALTON and WATsON to study the survival
of the progeny of a mutant gene and to study random variations in the
‘frequencies of genes. J.B.S. HALDANE (1927) likewise applied the
model to genetics.

The first complete and correct determination of the probability of
extinction for the Galton-Watson process was given by J. F. STEF-
FENSEN (1930, 1932). The problem was also treated by A. KOLMOGOROV
{1938), who determined the asymptotic form of the probability that the
family is still in existence after a large finite number of generations.

A. J. LoTkA (1931a, 1931b, 1939a) carried out GALTON’s idea, using
American fertility data, to determine the probability of extinction of a
male line of descent. N. SEMENOFF (1935, Chapter III) used the Galton-
Watson model in the elementary stages of his theoretical treatise on
chemical (as opposed to nuclear) chain reactions, and W. SHOCKLEY and
J. R. P1eRCE (1938) employed the model to study the multiplication of
electrons in an electronic detection device (the electron multiplier).

After 1040 interest in the model increased, partly because of the
_analogy between the growth of families and nuclear chain reactions, and
partly because of the increased general interest in applications of prob-
ability theory. Early work stimulated by the nuclear analogy included
that of D. HAWKINs and S.UraM (1944) and C. J. EVERETT and S. ULAM
(1948a, b, c, d). During the past 15 years the model has been the
subject of numerous papers in Britain, the Soviet Union, and the United
States. : :

The original Galton-Watson process and its generalizations are
connected with work dating back to NIELs ABEL! on functional equations
and the iteration of functions, and with various lines of development in
the theory of stochastic processes. For example, there is an interesting
connection between the Galton-Watson process and the so-called birth-
and-death processes, introduced in a special form by G. U. YULE (1924)
in a study of the rate of formation of new species. The species, rather
than individual animals, are the multiplying objects. There are also con-
nections with the theory of cosmic radiation formulated independently

1 ABEL (1881). This posthumous paper appears in ABEL’S collected works.



2. Definition of the Galton-Watson process $

by H. J. BHABHA and W. HEITLER (1937) and by J.F.CArLsoN and
J. R. OPPENHEIMER (1937).

These biological and physical problems have required treatment by
mathematical models more elaborate than the Galton-Watson process,
which is the subject of the present chapter. Although some of these later
models are only remotely related to the Galton-Watson process, others
can justifiably be considered its direct descendants. It is with these that
the chapters after the first will be principally concerned.

With few exceptions we shall treat only processes in which it is
assumed that different objects reproduce independently of one another.
This is a severe limitation for any application to biological problems,
although there are situations, which we shall point out, where the
assumption of independence seems reasonable. For many processes
of interest in physics the assumption of independence seems realistic,
although, of course, the models are always imperfect in other ways.

2. Definition of the Galton-Watson process

Let us imagine objects that can generate additional objects of the
same kind; they may be men or bacteria reproducing by familiar biolog-
ical methods, or neutrons in a chain reaction. An initial set of objects,
which we call the 0-th generation, have children that are called the first
generation; their children are the second generation, and so on. The
process is affected by chance events.

In this chapter we choose the simplest possible mathematical de-
scription of such a situation, corresponding to the model of GALTON
and WaTson. First of all we keep track only of the sizes of the successive
generations, not the times at which individual objects are born or their
individual family relationships. We denote by Zy, Z;, Z,, ... the numbers
in the 0-th, first, second, ... generations. (We can sometimes interpret
Zo,Z,, ... as the sizes of a population at a sequence of points in time;
see Secs.V.5 and VI.27.) Furthermore, we make the two following
assumptions. _

(1) If the size of the n-th generation is known, then the probability
law governing later generations does not depend on the sizes of generations
preceding the #-th; in other words, Z,, Z,, ... form a Markov chain. We
shall nearly always make the additional assumption that the transition
probabilities for the chain do not vary with time. -

(2) The Markov chains considered in this chapter have a very
special property, corresponding to the assumption that different objects
do not interfere with one another: The number of children born to an
object does not depend on how many other objects are present.

Assumption (1) could fail, for example, if a man with few brothers
tends to have fewer sons than a man with many brothers. In this case

1#
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it would help us to know whether a generation comprising six men were
all brothers or came from three different fathers. We might restore the
Markovian nature of the mathematical model by introducing different
types corresponding to different fertilities. This would lead to the models
of Chapters I and III.

Assumption (2) fails if the different objects interact with one another.
Some discussion of this point for biological populations is given in
Secs. 7.3, V.2, and V1.23. The assumption is supposed to be good for
particles such as those of the neutron processes of Chapter IV and the
electron-photon cascades of Chapter VII.

The author will occasionally remind the reader of the weak points in
applications of the various mathematical models to be introduced.
However, there will be no systematic attempt to evaluate the worth of
the various assumptions.

2.1. Mathematical description of the Galton-Watson process.
LetZ,, Z,, Z,, ... denote the successive random variables in our Markov
process (more particularly, Markov chain, since the states in the process
are nonnegative integers). We interpret Z, as the number of objects in
the n-th generation of a population or family. We shail always assume
that Zy=A, unless the contrary is stated. The appropriate adjustments if
Zy+1 are easily made, because we assume that the families of the
initial objects develop independently of one another.

We denote by P the probability measure for our process.” The
probability distribution of Z, is prescribed by putting P(Z,=%)=¢,,
k=0,1,2, ..., 2 p,=1, where p, is interpreted as the probability that
an object existing in the #-th generation has % children in the (n41)-th
generation. It is assumed that p, does not depend on the generation
number #.

The conditional distribution of Z,,,,, given Z,=#, is appropriate to
the assumption that different objects reproduce independently; that is,
Z,., is distributed as the sum of % independent random variables, each
distributed like Z,. If Z,=0, then Z,,; has probability 1 of being 0.
Thus we have defined the transition probabilities of our Markov process,
denoted by

*

Pf=P(Zn+1:?.!Zn=i)’ 4,1, n=0,1, .... : (21)

These transition probabilities are defined for each s and § even though,
strictly speaking, the right side of (2.1) is not defined as a conditional
probability if P(Z,=1)=0.

Having defined the process, we shall want to know some of its prop-
erties: the probability distribution and moments of Z,,; the probability
that the random sequence Z,, Z,, Z,, ... eventually goes to zero; and
the behavior of the sequence in case it does not go to zero.
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2.2. Generating functions. We shall make repcated use of the
probability generating function

1(s) =§°f>ks". Is|=1, (2.2)

where s is a complex variable.
The sterates of the generating function f(s) will be defined by

fols)=s, h(s)=1(s), (23)
fn+1 (s)=f[f,,(s)], n=1}* 2, e (24)

The reader can verify that each of the iterates is a probability generating
function, and that the following relations are a consequence of (2.3)
and (2.4):

Frin()=Eulfa®],  mon=0,1, ..., (2.5)

and in particular,
fusr () =1.[f(s)]. (2.6)

3. Basic assumptions
Throughout this chapter we shall, without further mention, make
the following assumptions, unless the contrary is stated.
(a) None of the probabilities gy, £y, --- is equal to 1, and po+p,<1.
Thus f is strictly convex on the unit interval.
(b) The expected value £Z,= Z kp, is finite. This implies that the

derivative f' (1) is finite. The svmbols 7'(1), (1), etc., will usually refer
to left-hand derivatives at s=1, since we usually suppose |s| =1.

4. The generating function of Z,,
The following basic result was discovered by WaTson (1874) and

has been rediscovered a number of times since. The Basic Assumptions
are not required for this result. <

Theorem 4.1. The generating function of Z,, is the n-th iterate f,(s).

Proof. Let f,(s) designate the g;enerating functionof Z,,, n=0,1, ....
Under the condition that Z,=#, the distribution of Z, ., has the gener-
ating function [/(s)]*, =0, 1, ... . Accordingly the generating function
of Z,,,1is

Font1) (8) ZP Z=R O = [f(5)],  n=01,.... (41)

From the definitions of fq)and f,, we see that they are equal. Using (2.6)
and (4.1), we then see by induction that f,(s)=/{,(s), n=1,2,.... [
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Theorem 4.1 enables us to calculate the generating function, and
hence the probability distribution, of Z, in a routine manner by simply
computing the iterates of f, although only rarely can the %-th iterate be
found in a simple explicit form. From the point of view of probability
theory, the main value of Thegorem 4.1 is that it enables us to calculate
the moments of Z, and to obtain various asymptotic laws of behavior
for Z, when # is large.

Remark. We leave it to the reader to show that if £ is a positive inte-
ger, then Z,, Z,, Z,;,, Zsy, --- is a Galton-Watson process with the
generating function £, (s).

We now consider the moments of Z,,.
5. Moments of Z,,
Definitions 5.1. Let
m=~&2Z,, o2 Variance Z,=&Z}—m?.

Note that m=f/(1) and a?=f""(1)4- m—m?2.

We can obtain the moments of Z, by differentiating either (2.4) or
(2.6) at s=1. Thus differentiating (2.4) yields

o) =F F 1) =F (1) fa (1), (5.1)
whence by induction f,(1)=m", n=0,1,.... If f’(1) <o, we can
differentiate (2.4) again, obtaining

fana () =L ) +F(1) (7 (1)1 (5.2)

We obtain f,'(1) by repeated application of (5.2) with n=0,1,2,...;
thus

Variance Z,.=€Z.’.—(¢’Zn)’=%:ﬂ’ mt; } .(5-3)
=na”, m=1.

We thus have the following results?.

Theorem 5.1. The expected value &Z, is m”, n=0,1,.... If o*=
Variance Z,<< oo, then the variance of Z,, is given by (5.3).

If higher moments of Z, exist, then higher moments of Z, can be
found in a similar fashion.

1 STEFFENSEN (1932) showed how to obtain the moments in essentially this
manner.



