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'FOREWORD

Munich, in the spring 1913, was a very livelyjcity with a famous
University, and the Institute for Theoretical Physics of this Univer-
sity had won a high reputation under the leadership of Professor
A. Sommerfeld. This young professor had already achieved great
fame. He had published a remarkable book ‘on the theory of the
gyroscope, and had presented a very extraordinary: paper at the first
Solvay Congress in Brussels in 7977 [French edition at Gauthier-
Villars, Paris.1912, p. 316 and p. 403]. In a stroke of genius, he noted
that Planck’s constant 4 represented a quantum of action, and that
the familiar quantum of energy h» was only an indirect result of
quantizing the action. He made a few curious applications of this
revolutionary idea, which P. Langevin immediately used to compute
a magneton, which differed from the present Bohr magneton only by
a factor 2a.
. When Bohr's paper on the hydrogen atom was pubhshed in 1913,
Sommerfeld immediately saw the importance of this new idea. I hap-
~ pened to be in his office. when he opened the issue of the Philosophical
Magazine, which had just arrived; he glanged through it and told me:
“There is a most important paper here by N. Bohr, it will mark a
date in theoretical physics.”” And soon after, Sommerfeld started
applying his own “quantum of action” method to'rebuild a consistent .
theory of Bohr's atom. This is -how the first quantizéd mechanics
was born, and why it progressed so fast. It was definitely Sommer-
feld’s discovery of the importance of the f $4q integrals that paved
the way and these integrals still aré at the basis of the whole quantum
theory.

Everybody wondered (and still wenders) why the Stockholm
comuittee systematically 1gnored Sommerfeld’s pioneer work in
modern physics, Such an omission is actwally impossible to un-
derstand.”

My friend P. P. Ewald gave an excellent summary of Sommer-
feld’s achxevements, and described the life at the Munich Institute
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i FOREWORD

for Theoretical Physics, in a Foreword to Volume. I of Sommerfeld’s
lectures (“Mechanics,” Academic Press, 1852). The special clarity
and the mathematical accuracy of Sommerfeld’s lectures were really
remarkable. I had the great privilege of attending, as a student,
lectures given by some prominent physicists, such as H. A, Lorentz,
H. Poincaré, and P. Langevin. But I was especially impressed by
Sommerfeld’s mas%@i'y' as a teacher. In his Foreword to Volume I,
Ewald quotes a few problems in which Sommerfeld was interested
in 1913. Among them is the question of signal velocity in a dispersive
medium, a short summary of which is presented in Volume 5, § 22.
This was the subject of research suggested to me by Sommerfeld and
it resulted in twin papers published by us in the Annalen der Physik
of 1914. The sdbject was a fascinating one, but it had, at that time,
only academic importance. Experimental verifications were discovered
much later, in connection with reflections of radio signals from the
Heaviside layers, and also for problems of radar systems. Theoretical
applications suddenly = appeared with wave mechanics, when
Schrodinger discovered that group velocity should be identified with
the velocity of particles guided by the waves.

All these miodern developments made it advisable to assemble
here a systematic presentation of the original papers, which are
rather difficult to find nowadays. It is hoped that the present book
will be helpful to many readers and save them time and trouble,
especially the trouble of fecomputing and rediscovering many impor- -
tant features of the general theory. : . :

It is a pleasant duty to thank Dr. E. Erlbach of the Watson
Laboratory .for preparing translations of the German and French

papers. |

L. BriLLovin

New York
September, 1959
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PREFACE

When a mathematician thinks of wave propagation, he starts by

: writing a well-known second order differential equation and discussing - *

its peculiar properties. The physicists is interested in these results,
but he immediately asks some indiscreet questions about waves in a
dispersive medium, when the velocity of propagation is not a constant,

" but strongly depends upon the frequency. The well-known differential

equation is no longer satisfied and must be replaced by a more com-

~plicated system 6T equations, which include the mddel, the physical
.mechanism, reacting on the waves and modifying the velocity. Each

problem seems different, but nevertheless some general properties
may be deduced and some defmltxons can be found to apply to a
wide class of systems

One of the most important deﬁmtwns refers to the greup velocity..
It seems to have been first discovered by Lord Rayleigh, who char-
acterized this velocity in sound waves. It is now known to apply. to
practlcally all kinds of waves. Let us use the vocabulary of radio
engineers and. consider a carrier wave, with a superimposed modula-
tion. The phase velocity yields the motion of elementary wavelets
in the carrier, whilé the group velocity gives the propagation of the
modulation. Lord Rayleigh considered that the group velocity
corresponds to the velocity of energy or signals.

This however raised difficulties with the theory of relativity which
states that no velocity can be higher than ¢, the velocity of light in

~vacuum. Group velocity, as originally defined, became larger than ¢

or even negative within an absorption band. Such a contradiction
had to be resolved and was extensively discussed in 1 many meetings
about 1910. Sommerfeld stated the problem correctly and proved
that no signal velocity could exceed ¢. I discussed the solution in
great detail and gave a complete answer. These original papers and
discussions’ are presented in the first chapters of this book. It was
found desirable to reprint completely these papers, which were

vii



viii PREFACE

published during the First World War and gré_ missing in many
libraries.

In the following chapters we give a later discussion of the subicct.,

fand introduce three different definitions of velocities: A — the group

velocity of Lord Rayleigh; B — the signal velocity of Sommerfeld:
C — the velocity of emergy transfer, which yields the rate of energy

- flow through a continuous wave and is strongly related to the char-

acteristic impedance,

These three velorities are identical for nonébsorbing media, but
they differ considerably in an absorption band.

Some exampies are discussed in the last chapter dealing with

guided waves, and many other cases of application of these definitions
are quoted. : o

These problems have come again into the foreground, in connec-
tion with the propagation of radio signals and radar. Reflection in
the. Heaviside layers requires a-real knowledge of ali these different
definitions. Group velocity also plays a very important role in wave
mechanics and corresponds to the speed of a particle. s

The present book should-be very useful to physicists and radio

- engineers and should give them a gogd basis for new discussions and

applications.

L. BriLrouIN -

New York
September, 1959

-
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CHAPTER I

INTRODUCTION
{. Phase Velc;city and Group Velocity

Many modern ideas on wave propagation originated in the famous
works of Lord Rayleigh, and the problems we intend to discuss are no
exception to this rule. The distinction between phase veiecity and
group velocity appears very early in Rayleigh’s papers.! It can be found
in his “Theory of Sound”? and in many articles reprinted in his “Sci-
entific Papers.” The problem is discussed in particular in connection
with measurements of the velocity of light ;3 and this is the place where
a curious error was introduced regarding the angle cf aberration. We
shall come back to this point later when discussing a very important
paper by P. Ehrenfest (see Section 5 of this chapter).

Let us first remind the reader of ihe fact that the usual velocity W
of waves is defined as giving the phase differerice between the vibrations
observed at two different points in a free plane wave. It is primarily

used for computing interference fringes that make phase differences
visible. In a wave

i

we observe the phase velocity W

w
(@) W=7

1 The very first idea of group velogity appears in a paper by W. K. Hamilton,

* Proc. Roy. Ivisk Acad. ), 267, 341 (1838). ' L
1 Lord Rayleigh, “Theory of Sound;” 2nd ed. (1894). First ed. published, 1877.
3 Lord Rayleigh, ‘Scientific Papers,” Vol. 1, p. 537. 1881.

1



2 . 1. INTRODUCTION

Another velocity can be definé-g, if we consider the Propagation of

‘@ peculiarity (tc use Rayleigh’s term), that is, of a change in amplitude

impressed on a train of waves.

This is what we now call a modulation impressed on a carvier. The

modulation results in the building up of some “groups” of large
amplitude (Rayleigh) which move along with the group vélocity U,

In wave mechanics, Schrodinger called these groups “wave-packets.”

A simple combination of groups obtains when two waves
' Oy =w+do Ry =kt Ak
' wg= o —Adw \k,=k1Ak :
.are superimposed, giving: | ‘
§ = A cos (wit — kyx) + A cos (wef — kyx)
- = 24 cos (w! — kx) cos (Adwt — Akx)

3)

@
(4)

This represents a carrier with frequency @ and a modulation with
frequéncy dw. The wave may be described as a succession of moving
beats (or groups, or wave-packets). The carrier’s velocity is W [Eq. (2)],
while the group velocity is given by U , _

do Jw 2

Fic. 1.

The situation is represented in Fig. 1 where we see a succession of
wavelets (w,k) with variable amplitude (4w, 4k). If we do not pay
®attention to the detailed motion and observe -qnly the average am-
plitude distribution, we verify that the amplitude curve moves forward

, With the group velocity U. . Looking more carefully at the detailed i

L



-2, EXAMPLES AND DISCUSSION: DISPERSIVE MEDIA 3

vibrations, we may see the wavelets moving within the envelope with
“ their own velocity W. We distinguish two different cases: :

e

6 - U>W The wavelets are building up in front of the group

and disappearing in the rear end of the group.

. The wavelets are building up at the back end of the
(7) U< W group, progressing through the group, and dis-
‘ ) appearing in the front.

2. Examples and Dlscussion; Dispersive Media

o
In a medium where the phase velocity W is a constant and does not
depend upon frequency, we have :
(8) - U=W

and any kind of signal is propagated without distortion.
More generally, when W. is a function of w (or k), we have

-

- ‘ . _law
V=2
with w == kW, hence:
O e oW
P AR 4 (ga) U—W‘{‘k—ﬁ‘

This is often written with the wave length A as variable instead of k;
when k= 2zn/i; hencey

A medium exhibiting a wave velocity W(k) is called a dispersive medium.
Vacuum is nondispersive for light (W = U = c), but all material media
are dispersive. It is impossible to think of a refractive medium without
dispersion. The situation is even more complicated, since W depends
upon the variables 4 (or w); the density p, and the temperature T. In
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4 1. INTRODUCTION

crystals, the direction of Propagation is also to be taken into account.
We shall restrict our discussions to isotropic media, but we must assume

(10) P W =W(kpT)

This is where the physicist’s viewpoint differs from the mathematician’s
idealization. Many textbooks on electromagnetic theory discuss material
. media with '

(11) € 2g dielectric constants of matter ahd vacuum
N permeabilities of matter and vacuum

but they usually assume ¢ and # to be constant, and this is a physical
imposeibility. The complete problem dealing with the three variables
k, p T will be examined in Chapter V. ~

1~

P SIope_U—-—'

FiG. 2.

A very useful graphical representation obtains if we plot w as a
function of % (Fig. 2). The slope of the chord 0P gives the phase veloc-
ity W, while the slope of the tangent at point P vyields the group
velocity U.

The velocity of light is a constant in vacuum, but depends upon
frequency in material media. The velocity of sound is approximately °
constant for long wavelengths, but depends strongly on the frequency
at short wavelengths, especially when the wavelength is of the order
of .the distance between molecules. Many such examples have been



2. EXAMPLES AND DISCUSSION: DISPERSIVE MEDIA 5

~ discussed in the literature.* The group velocity for sound is then equal
to the phase velocity only for long wavelengths.

. It was assumed, at the beginning, that the group velocity was ac-
tually the velocity at which a finite signal may propagate through the
medium, but this is only an approximation. We shall see later that a
finite signal is distorted while traveling through the medium, and that
its velocity may become very hard to define, on account of the change
in the shape.

This is especially true for an absorbing medium. Absorption is
strongly frequency dependent, and is always associated with strong
dispersion.  ° - '

As a rule; we shall see that the velocity-of a signal does not differ
too much from the group velocity, whenever absorption and disper-
sion are small. Otherwise, the velocities may differ widely.

Let us now discuss a few interesting examples, to which the reader
may add a great variety of problems discussed by L. Brillouin in a
previous book.* ~

Rayleigh discusses® the problem of wave propagation along a bar,
and obtains an equation for lateral vibrations:

(12) aat{ kS Kﬂbﬂg %0

This propagation is frequency dependent and for a wavelength 1 one
obtains a velocity

2Kb R~
- =Kbh

(13) W=

with & = 2z/A.

In this example Rayleigh discusses the problem of group velocity.
He assumes, more generally,

(14) W = Bi* = B'k-»

¢ See, for instance:’ L. Brillouin, “Wave Propagation in Periodic Structures.”
McGraw-Hill, New York, 1248. Reprinted, Dover, New York, 1953. ‘L. Brillouin
and M. Parodi, ‘‘Propagation des ondes dans les milicux pénodlques Masson, Parig,
1256.

= 5 Lord Rayleigh, reierence 2, Vol. 1, Section 181, p. 301

®

&



6 : I. INTRODUCTION
which results, by our formulas (8) or (9), in
(15) : _ U=W(1—n)
For lateré.l vibrations of bars,

(16) : n=—1 U=2W %
The group velocity is thus twice as large as the phase velocity.v This
is a typical example of case (7) in Seetion 1 above. ‘

In another chapter. of “Theory of Sound,’’¢ Rz’x{rleigh discusses
surface waves on water. Assuming a density p, a depth J, gravity g,

and surface tension T, he obtains the general formula for the phase
~ velocity?

an - | -W==%+5rp—ktaxm<kz)

- a formula exhibiting a strong dependerice on k.
In many important cases, the depth / can be considered as prac-

tically infinite (deep water waves):; thus the hyperbolic tangent
is 1, and hence

i -y . 2_ & E = E'-'_‘
(18) . wi=£ 4 - k=3
When A is great, £ is small, and the waves move mainly under gravity,
with a velocity - - =
1/2 ' 2
¢ CPW=lE 2 8P . 2 2T
(19) W._<k) when Rk T AZ> o

This is the case of long waves on deep sea. For small ripples,  is large,
the second term in Eq. (18) is dominant, and

: . h 1/2
(20) | W= (ﬂ‘)
: P

8 Lord Rayleigh, reference 2, Vol. I_i,' Chapter XX.
? Lord Rayleigh, reference 2, Vol. II, p. 344, Eq. (7).

&



3. GROUPS AND SIGNALS : 7

Between these extreme cases, there is a minimum velocity W,

corre§pond1ng to 4y and 7, values for wavelength and period, respec--
tively.

: '__4Tg}“ _.,.Tuz T”‘
- According to Eq (19), long waves on deep sea yleld a. power of
n = 4 and hence a group velocity . = -

(g) ’» U=§W

according to Eq. (15). This is a typical example of case (8) in Section 1
above. -

Short ripples moving under surface temsion, on the contrary,
‘correspond to s = =} in Eq. (20); hence .

(23) - Um—

which is an example of case (7).

A very simple experiment can easily be made and provides an
excellent example of roup velocity. Just throw a stone in a pond,
and look at the “‘ring8” produced on the surface. They are composed -
of a small number of short ripples. The system as a whole propagates
with the group velocity U but each individual ripple moves with the
phase velocity W. Since W < U, these ripples are building up dalong

. the outside ring, moving more slowly than the ring, and - dxsappearmg
on the inside of the ring.

: 3. Groups and Signals

The preceding éxavnple may serve as an introduction to the discus-
sion of signals. Groups were defined by@Raerlgh as moving beats
{Eqs (4) and (5)] following each other in a regular pattern. A signal
is a short isolated succession of wavelets, with the system at rest
before the signal arrived and also after it has _passed. A signal may
be sharply defined in time and duration, in which case-its frequency
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spectrum extends from — e to - oo, or it may have a finite
spectrum, and exhibit no absolutely sharp boundaries. These problems
were extensively discussed elsewhere.8

We shall assume a signal carried.by a carrier-frequency wy and char-

acterized by a modulation curve C(¢). The complete signal sent along
the line at the input x = 0 is

(24) ) C,(t,0) = C(t) cos wgt

Let us now analyze the modulation C(f) in a Fourier integral, '
assuming that this modulation has a finite spectrum extending from
0 to w,:

(25) C@t)= ,‘ B, cos (wt + ¢o) de

w=0

where B, is the amplitude and ¢, the phase of the » component. -
The input signal [Eq. (24)] is represented by the Fourier integral

C,(t,0) = S B, ton (iod 3l con fingd) s
w=0

(26) |

Doy,

=3 S Bufcos [(@ + o)t + $o] + cos [(ws — o)t — o]} dw
o=0

The resulting spectrum now extends from (wy — @) to (wy + w,)
and thus covers a band 2w,_,. For simplicity’s sake, we may assume

(27) Wg = W

and avoid negative frequencies. “The line along which propagation
occurs is characterized by a certain relation between w and &, as
visualized in Fig. 2. ®

& L. Brillouin, reference 4, Chapter V, p. 78. L. Brillouin and M. Parodi, ref-
erence 4, Chapter V, p. 81. L. Brillouin, **Science and Information Theory,” Chapter 8,
p- 86. Academie Press, New York, 1956.



