Documents of SDM' DS 2003

Proceedings of the First International Workshop on
Software Development Methodologies for Distributed Systems

Edited by

Zhou Zhiying p> %
Scott Tilley (i) Hy 5k

s co AR ML

Tsinghua University Press

Series : SDM-DS 1

Documents of SDM-DS 2003

Proceedings of the First International Workshop
on Software Development Methodologies for Distributed Systems

T R T REA XS

SDM-DS 2003 &£ F

Edited by
Zhou Zhiying &> ¥
() Scott Tilley W

AERFHMR

Tsinghua University Press

b=

Copyright Permission: Authors are allowed to re-publish their paper in the international

Journal.
The papers in this book comprise the proceedings of the meetings mentioned on the cov-
er and title page. They reflect the authors’ opinions based on the comments from SDM-
DS 2003 reviewers, which located in last section.” Their inclusion in this publication
does not necessarily constitute endorsement by the editors, SDM-DS 2003 as a whole,
or the Tsinghua University Press.

All Rights Reserved.

Series SDM-DS 1(2005-1)
ISSN 1673-1239
ISBN 7-302-11186-3

WAL A , BHEN B, 23R iE . 8610-62782989 HASMAF AT

BB EERB (CIP) ¥ i3

S0 BB T & i R SC £ = Documents of SDM-DS ZOOS/HZ% (N BR 55 48 (Scott
Tilley) #. - -db38 . 4 KEH R, 2005. 6
ISBN 7-302-11186-3

oSy Nl QR Qi+ M. FEE— D RE—HMHF 5 — BHRSIN -5
V. TP31

b A B 548 CIP 388 F (2005) 48 006255 &

Editorial organization. The Editorial Committee of Series SDM-DS

Chief Editor. Zhou Zhiying

Sponsored by Tsinghua University

Visit our Web page on http.//www. tsinghua. edu. cn/docsn/wb/interconf/softwaredev. htm

Published by Tsinghua University Press

A BB KRR stk . 65 K F R B E
http://www. tup. com. cn HiR 4% . 100084
BB 8610-62770175 EFMRSE: 8610-62776969

BIEmE. k& ks HERI: ¥EF FH®

ENRil # b 5Tt R AR ER R T FirE: Wi &TEN% AR A

RiT# B BERFRATH B E; P EEBE N O LA

w . 185X260 ENgk. 11.75 BiG: 4 F#. 342 T%

WO, 20054E 6 A 10K 20054E 6 A% 1)KEDRI

ZIN - & 1~1000

E Mt Price: 36.00 55 (In China)/35 USD(Other Regions, Including customs duty)

ztii%huﬁﬁ)t?mé“?ﬁmu&mﬁi\{ﬁlﬁ.Mﬁ%@%lﬁémﬁdﬁﬁ?ﬁfﬁk#m!‘mi.'!'.m%w%
Wik, BEEBIE: 8610-62770175-3103/8610-62795704

SEREHTEFEER

(T RGEHGTFRBORCEYE T 76 b 88 57 4% 51 A AL 1 B 7 80 % b H R &

SDM-DS 2003 i 30 (¥ R ERMES KRG W, T4 Web RFEB A, WX MBE, LB
HHRG TR MUAEFLIBRATNEN S UEZEFATHE IT G — LR R
R A B 3T WOR B . _
. HEEZFERAEAMRNEHELR. SHREMNABERRTE., HENMNEZZHKN
ROERE(EERRESHBRIO BN AN ER: HHENHARAFAR. TRRAMNK
HEAE,BR T B R EEH EF AT MERE . BOE. S H%,
FHERCEEMX., EXBUHRLKRKNAIHELE BFNELBERE X THRER
HHE ERENAINNERENARMNBERRNOME, LFTERTARENESL. 4
HRGEHNTHLRENRAETSBEE . EAUBR K BN LR. FRATEHEMNE
B oo oo HAK®S T MEAETEEBESNRIRRNFRFTENRE L. LK
DMBREKMEFES FEEERKX A EHMERFRAE. ETFEHFERD T,
BEMFEEREANAERARNOGEAGE, LA, 3, HBARBHOFHE
RBESREZBNEMRFLMNFEE. HHERKMEITFRBERBERKAIERE.

BHEREBTERRNSHRENRGT R ERBRITS,fER 2003 49 AR 2
P IR T R FH R AT O R B R B T B L BR R BR BF i 2 STEP 2003 #9— &84, 4F % 4 87 IT
MRARBRHAS MBS, FRERZH. SDM-DS FEE At B Lk &
R MBI EB S LRA AL . 75 BT %T8 STEP 2003 494 100 £ A2
s ERESFEREXEE S L. SDM-DS 2003 BB K BFiTL, L2 28 55, 4 50
FASEXR. KELSWERHT IO CE R M EE NEES) KRR RS &R
RIS LB T (FE RS AR A AP BB 8 BT 2 AR 37 A AR B 5 0 1%
Bl R AT R B X A9 2 5 R b B SRR %

SDM-DS 2003 ME#RIEXXRERLER. KEEFN BT EFERRKRLERESE S
HNLFREBMERE. NERERLETREFEERWEE, LEMEFEL 22
EXRMTEFRRIERER T EARE. AN ERECHEEN T RAMELHE,
RRMHARTHABBRARR. BREMHERET . REEHKBEE, ARBHESTFHAR
BRI RER R X FEAHREAN—FE KRS . HEREEER BN TREREFE
MEREMAREE REUEERBRFEDEFRANES ETAGEG PR
AT EH) MBI AL RSO R 7k, G RRE S 4 — 2w,
KEGS EARATRBE MK ARSI AS B AL ETRRAETREY
EHTCRBEBE T, E T RBREE; BREXRB,BRET YA ERG TER
FIEH —FFME . FEETRERBEZEER. ER TR . FEWRAL, HETF
B UML #AT8 M4 FF R R DURE IR 5 77 IR AL D0 BE P 6825 150 5 3047 8O 247 19
BB, ATANRENE 2N WX T T OREELE S,

ERMERSIAEETEERIMERT R, PEBEARSSLRETRBL.
SDM-DS 2003 BB STEP ik &, At M EEHR. K A¥R FRAMC. REATHKE
LHBER, THENL VIR XESR -EHEL, AR AREHEAR T, HEHR
EEMIMAR EEERARER, TURXLCHETERANER YRRLELET
HERE . EHRA. BREEFRAR RRSURA R E K E R & ;64 HAR &SRR
Bk B X OMBIRR —KABHEEN. ¥ERTH. EAER, IRESLELA
REMEFRUK T, ELRT .2 F S G0 T A FF R 3t [288 09 (5 1, 3 af HF i
SN B)RR A e IR IR T X & B RS TR BIIAGR.,

SDM-DS 4 # 7[5 W A5 B9 385 5 - B A 51 F STEP R H MR &G I —FE B B K
FR T RKUEFMBE R R, ETUEEN . ERERBOER T T, S HR&
iS50 28 0EHUSIE ., AR XM ERIFFRAR F k) K E W HR M £ W
FoEREMY, MBE, —HEEANAZ. EWEFERAIRES Bk, EWREH
FR— BRI CHA — AU) & K 45 1 (o] 38 F 8) B 5 (B B8 4% BB R AT Oy B 24]
BHFAT, RILFFE SHIFFERNANEH Y LR, MRFREES 28 0385 0 1% 5
o T VE AT RE R B N N PE &7 645 A, SDM-DS 2003 EBRBF it 2 B3 % B M
RAEE, BRFNTE, T¥RES NEHEERRPORAR. BAFTES AL
BAFENLRER: AER AT AT LR NG LR E AR ERR%EA WA
S, FAMFFERERNSVURS AL B4R S L EE LR, FFSHEEES
HE .

ENRFHARENBERFERT RS, XEER R, AL XN IFFERLR
EE TG AU REHBHEAR BHNEFEREARBRBY LS, Wi SDM-
DS G M EH AL BRM B A RFBISTAENT INRE ST FARR . CRAEE, 5 R
BRELTRAMFE, NEZECRE BHRBRABSEEL MRS, HEXH
A R TR, R E S ML,

WAL ITERR, NERES BRLH. CHER MRABIEIRETS T EH
TRARRAOZW ER—EEENSHEL B ERETENIHRREROER T,

Bz %
2004 4F 9 § Ti§% K%

Co-Organizers

Zhou Zhiying (J12Z238) is professor, dept. of Comp. Sci. and Tech. , Tsinghua Univer-
sity, China, She was invited as a conjunct associate researcher of Courant institute of
math sci, » New York University from the end of 1979 for 2 years; as a fellow of Com-
puter division of EE, UC Berkeley in 1981 winter . She lectured software engineering in
Tsinghua, and was responsible to that scopes in several large complex software system
developments, which awarded nationally and internationally. Her publications include
more than 60 papers and 20 books in Chinese and English. She, as Co-Organizer and
Chair of international workshops on software development methodologies in distributed
systems, works for promoting academic and technologies exchange between the east and
west. Her current research interests include theories and practices based on distributed
systems, software development methodology, ancient oriental philosophy, science his-

tory and cognitive science.

Scott Tilley (#7#&1#) is an Associate Professor in the Department of Computer Sciences
at the Florida Institute of Technology, and Principal of S. R. Tilley &. Associates, an
information technology consultancy based on Florida Space Coast, Hehas a Ph. D. from
the University of Victoria. His research interests include software evolution, program
redocumentation, and technology adoption. He co-organized and co-chaired several In-
ternational Workshops on Software Development Methodologies for Distributed Sys-
tems, and also on the Steering Committee of the SDM-DS series of workshops. He is
Chair of the Steering Committee for the IEEE Web Site Evolution (WSE) series of e-
vents, and the current President of the Association for Computing Machinery Special In-
terest Group on Design of Communication (ACM SIGDOC).

Contributors on Organizing and Reviewing

Liu Chao, Beijing University of Aeronautics and Astronautics, China
Huang Tao, Institute of software, Chinese Academy of Sciences, China
Jin Beihong, Institute of software, Chinese Academy of Sciences, China
Shengyuan Wang, Tsinghua University, China

WenPin Jiao, Peking University, China

Sean Wong, Entena, USA

Shen Beijun, East China University of Science and Technology, China
Lv Jian, Nanjing University, China

Yushun Fan, CIMS Center, Tsinghua University, China

Jing Dong, Canada; University of Texas at Dallas, USA

Jingde Cheng, Saitama University, Japan

Rao Talasila, USA; iGATE Global Systems, Bangalore (India) and Wuxi(China)
Shihong Huang, China; University of California at Riverside, USA
Zhang Leilei, Tsinghua University, China

Preface

SDM-DS 2003

Distributed systems are notoriously challenging to engineer. Heterogeneous compu-
ting platforms, multiple programming languages, and increasing complexity all charac-
terize the development of modern distributed software-intensive systems. An over-arc-
hing theme of the engineering of such systems is the need for a mastery of multiple topic
areas. New technologies such as Web services offer innovative solutions to long-stand-
ing problems of coordination, integration, and deployment. At the same time, new
risks inherent in the adoption of such technologies, such as security and reliability,
must be addressed.

Software development methodology for distributed system has become a hot area of
interest for information technology professions. Academics and researchers interested in
distributed systems focus on fundamental areas from a theoretical point of view. For ex-
ample, software engineering processes, software architecture, and net-centric compu-
ting. Industry is concerned with quality attributes that can affect the realization of a dis-
tributed system, such as Internet standards, quality of service issues, and usable tools
and techniques from a practical point of view. Educators need to provide students with
multiple perspectives for professional success. But gaps among the different groups of
stakeholders do exist.

The goal of the two workshops on “Software Development Methodologies for Distrib-
uted Systems” that took place in 2003 was to bring together members of the distributed
systems, software engineering, and information technology communities to discuss in-
novative methods for designing, constructing, and managing large-scale distributed sys-
tems, as well as to explore the new ground for the hard nuts of the distributed systems,
Modern distributed systems would be benefit from transiting results from theory to
practice,

The original workshop was scheduled to take place in July, 2003 in Orlando, Florida,
USA, as part of SCI 2003 conference. However, 2003 was an unusual year for China as
well as the rest of the world. For example, SARS delayed the workshop’s participants
from traveling to the event. The cooperative work with STEP 2003 successfully turned
SDM-DS into a truly distributed workshop, both in time and in space; SDM-DS 2003
(A), in Amsterdam, The Netherlands on Sept. 20, and SDM-DS 2003 (B) in Beijing .
China on Dec. 16-18. In the end, the result was perhaps more satisfying than the single

day in Orlando would have been.

vii

SDM-DS 2003 was a special event that featured the studying, understanding, exchan-
ging the ancient Eastern philosophies and modern Western ideas in science and technolo-
gy to develop the innovative methodology for distributed systems by learning each other
from the strong points to offset the weakness. Then, the engaging discussion sessions,
such as paper presentations, group work, brainstorming, technical demonstrations, and
a visit to the Zhong-Guan-Cun Software Park, worked up the fruitful gains of exciting
new research and empirical results from different positions.

The organizer’s philosophy for SDM-DS 2003 is to provide a forum for enhancing the
international exchange of information, and trying to connect the different viewpoints
within a workshop for mutual benefits. The organizing work showed that there are a lot
of different viewpoints in different positions, as the difference between the academic re-
search and industry practice. Besides the workshop meetings, the publication of pro-
ceedings also is needed to reflect the reality. Here we provide comments to the paper
with an opportunity to express author position.

The success of the workshop results from the contributions of all authors, partici-
pants, and volunteers. We are all beneficiaries of the fresh ideas, efforts, and enthusi-
astic scientific spirit to the final proceedings. SDM-DS 2003 provided a wonderful begin-

ning to what hopefully will be a bright future to the cooperative participants.

Zhou Zhiying Scott Tilley

Co-Organizer Co-Organizer

Tsinghua University , China ‘V Florida Institute of Technology, USA

Vil

Contents

| Prb‘c'eédisng&“ of the First International Workshop on
Software Development Methodologies for Distributed S ystems

Preface oo e e e e e e e e e e e e en enee B LT R TRLTINN § ¢

Regular Papers
Fundamental

The Perfect Ball in Software Development ««+ -+« «+« s er eeanutreninams it aeniis st vesibe seses i eee s sesee s aes 3
Zhou Zhiying

Web Ontologies INTEGration «+«x«--sctesreeersee saruts st teetit et tas citrae e ves et senaesaas seees ses ane sneeesenaenene
Jian Li

Behavior Inheritance in Multi-tier Modeling of Distributed and/or Concurrent Object Systems -+ -+ 18
Wang Shengyuan and Yang Ping

Regular Papers
Architecture, Components, Web Services Technologies

PP/T Model and its Simulation for Long Running Business Processes ««+---sssserrrreesseiserrenrieences 27
Wang Jinling ; Jin Beihong and Li Jing

A Grid~Enébled'ParaHel Programming Library «««ecteeerermeententiimniiier i e ies st e e e eee s ees 39
Jingbo Ding , Weiqin Tong and Jianquan Tang

A Formal Design Component Framework — «r+scceeeureurmurruetuiiii ettt it e it et it et e e e ee e e 47
Jing Dong, Paulo Alencar and Donald Cowan

Integrated Enterprise Modeling Framework for Developing Consistent Distributed Systems -+veereeever 63
Yu Zhao and Yushun Fan

Design Patterns for Web Service «+e-ooveseetrimisiiiiin e it is s e e s e s e eee 70
Kai Qian

NetSniper: an Information Filter Based on Multi-Agent and Hidden Markov Model +++-eesveeervreeenees 80
Li Baolin, Duan Fei and Li Xingjuan

Regular Papers
Testing and Validation

Software Reliability Growth Model Selection and Combination: a New Approach «eseerereiiniinii. 89
Hao Wang, Haiyan Yang, Chao Liu and Maozhong Jin '

ERP Software Testing and Its Quality Evaluation System S PRV ¢
Chen Xuesong s Sun Baogian and Shao Kai

Web Services Based Test Report Generation «««-se«eeeeseusucsiesvotnieias et sie it seneree e ee s 105
Luo Ling and Bai Xiaoying

Regulat Papers
o Experimental Works
UML. Standards in Large Imp’lemenfatibns-—Experiénces from’an Industry Viewpoint = «o+eeeeeiveees 115
Rao Talasila
Finds in the Testing Experiments for Model Evaluation «+: e seeessveseresremeesninniomsens e cirses snsnovnn - 121
Wu Ji, Jia Xiaoxia, Liu Chang, Yang Haiyan and Liu Chao
Case Study: Prototype Development and Test-driven Method «-» - s eseeeesnerieeiiiii i, 129
Shi Li, -Zhou Zhiying, Xiao Huiyong and Gu Tianyang

Presentation Slides

Challenges in Redocumenting Distributed Systems ««-«rss=sresetsrearnierrmsiinrieserinesecnesseeressveses 137
Shihong Huang

Software Maintenance Challenges in Automotive Control Systems -+« ++tessssrreereerreciannniiernnenses 138
Scott Tilley

Adaptive Middlewarc for Web Services +-«s+++vereeerresuremmtaniennesiinaisniee et et st ves v st cnseneee s 139
Kostas Kontogiannis

Issues in Distributed Systems Development =+ - <t cesreeeescevientin et iie et v e e eie e 142
‘Hausi A. Miiller

Adoption Issues with using . NET for Distributed Systems s++«+--eecrermsereiiniiinisiiiirinn e 144
Shihong Huang ’ ') :

Developing Software Engineering Environments for Collaborative Software Development ++-c-ecros 145
Cornelia Boldyreff

Short Notes

Design and Implementation of an Extensible Service Framework of EJB Container -=-«r-+reeseeereeeees 151
Shibiao Lin

The Performance Optimizing Policy of Entity Beans -« = «+steeeet setaitemrineuiiiiieoriecvic vt veeeneresn0oe 153
Zhang Wenbo, Cheng Ningjiang, Liu Shaokua , Fan Guochuung and Huang Tao

Coordination-Centric Construction of Internet Applications ««+++««esere rtertmnuieusiamrnsennesveneeeiieees 154
Xiaoxing Ma s Xianping Tao and Jian Lu

A Qualitative Assessment of the Efficacy of UML Diagrams in Aiding Program Understanding - 156
Scott Tilley

Comments and Author Positions for Regular Papers

Exchange Viewpoints between Authors and Commentators <+ -+« == «tessseeeritieriieiiieiiinierineen e ses 159
Jing Dong, Rao Talasila, Wenpin Jiao, Sean Wong , Shen Beijun., Lv Jian,
Wang Shengyuan, Jingde Cheng . Huang Tao, Jin Beihong and Zhou Zhiying

Appendix A: Agends for SDM-DS 2003 (A, B) -c-ccoeeeermieiieiiieeie it eee et aeeeee e evans 169
Appendix B. Parts of Call for Papers - oo e 174

Vi

Regular Papers
Fundamental
The Perfect Ball in Software DevelOpment ««+c- -+ -+ seresaesmtiorten cremme i entce et ettt oo s

Zhou Zhiying
Web Ontologies Integration e

Nel

Jian Li

Behavior Inheritance in Multi-tier Modeling of Distributed and/or Concurrent Object Systems -+ -++ 18
Wang Shengyuan and Yang Ping

The Perfect Ball in Software Development

Zhou Zhiying
Department of Computer Science and Technology »
Tsinghua University, Beijing, China

Abstract: Many implications in the software practices motivated the work on perfect ball. It reflects
the uncontrollable and the unknown parts in the real project, and of fends the foundation of the most of
existed methodologies , such as consistency. The concepts of perfect ball are resulted from exploring the
interesting linkages among advance west sciences/technologies and current software reality. It absorbs
the ideas of Heisenberg’s uncertainty relation. Perfect ball aims to substitute for the pre-fired goals
of projects in the traditional software development, and for the dynamic goals of projects in the
modern agile technology. The software developments under the perfect ball paradise reflect both
subject and object issues in the software developments. Both subject and object grow up together. It
means that the vivid learning behaviors in the software developing substitute for only mechanical

behaviors in the traditional software developing.

Keywords: software development methods, perfect, goals, uncertainty relation

1. Introduction

The computer system is the machine embedded human thoughts as automatic software system. Today the
influences of the software systems in the society and the daily life are growing up rapidly. There are
many stories about the serious damages from one bit fault within millions lines of codes of software
system. Software development had to pursue the perfectly high quality in their development processes.
Usually, the perfect means the qualified artifacts of the project. Zero error, such as the clean-room
software development, dreamed to be the best. It might be a real target in the traditional stable
environments, but it is not always good in current software development. Now many successful projects
show the alternative trends for better solutions.

The next paragraphs analyses and distinguishes the premises of project requirements of the traditional
software development methods {rom one of the modern correspondents. The facts about the unavoidable
imperfect demonstrate why we need to push up the new ideas, and how to consider the influences from
the unknown in the development cycle.

Then, a new idea, named as “perfect ball” for the software development in the very complex situation,
is emerged. Heisenberg’ s uncertainty relation describes the observation relation between object and
subject, and promotes the concepts of perfect ball.

The summary mentions the simple examples of perspective applications for the test-bed of the concepts
of perfect ball, such as a case study on test driven method.

2. Premises of project requirements in traditional software developments

The traditional software developments assume that the development tasks work under the ideal and
“perfect” conditions, as if no fault. There are many implications in the software practices. The following
phenomena about “perfect” are the examples of implying understanding in the most of existed
technologies.

a) It is common practices for developers that there arc no written items about the faults in the
platforms. Developers have to recognize the functionality of the platform as “perfect” as announced.

b) The goals or requirements of software project are generally to demand to improve until perfectly

3

complete and exact consistency. It also is the tasks of the technologies, tools and managements.

¢) The software development organization could control and improve the development processes up to .
the perfectly automatic and efficient as CMM level 5.

d) Tools announced to be perfectly helpful and useful, endlessly

e) The developers are qualified, or selected and trained to be the perfect as demanded.

f) Testing is the last line of quality, but it bears the great pressures and extreme difficulty for reaching
the planned goals if the system is quite complex.

Generally, software development methods are relied on the project plans. The reality of the project
plan is under the implications of above “perfect”, and it is imperfect in facts for the very complex
systems,)

To reduce or avoid the development complexity, decomposition technologies try to control and reduce
the development complexity. Then developers only consider several small components with hopeful less
complexity and their relationships. The finite goals of the project become the main concerns for project
success because only limited resources exist in the organizations.

As the system complexity increased by increased, the volume of details of components and
relationships in the traditional technologies [1, 2, 3] had to be grown up greatly. The correspond
methodologies and developmerit processes’in main technology stream have to process the great volume of
works. They face the new challenges from huge workloads and complexity never seen in the past, since
the economic globalize and network computing.

3. Features of the modern development technologies

The impacts of the economic globalization bring additional connections and the shift change's.ir'i&o the
software developments. There were the real situations, whatever the best teams and the best
managements worked properly out the best output artifacts, but the output artifacts could not satisfy the
end-user’ s needs if requirements had been changed essentially or quickly, Then, the expected best
became the unqualified in such situations ever if software project was not very complex.

The modern software development technologies reflect the shift changeable and adaptive. IT
professionals look for the agile software development methods, -which aim the dynamic goals of
development project with the development plan in a short period. ‘New methods focus to speed the
development cycle, reduce the workloads, and adopt tools, which could ease IT skills of developing
software applications for the great number of man forces qualified to tasks of projects. It is easy to
explain why the agile software development methods become popular and gain better solutions in different
situations [4, 5] if we think about a simple metric of the relationship between the change speed and
developing time.

In formal terms, the traditional software development corresponds to the deductive processes from
premises of the project requirements; the modern one corresponds to the set of simpler deductive
processes from the sets of premises with the quite limited set size, for timely reaction to the changes.
However, many implications in the software practices reflect the uncontrollable and the unknown parts in
the real project, which offends the planning and controlling spirit of the existed methodologies. In fact,
the modern methodologies, as the agile, also face many difficulties if they attempt to keep stable
successes in the different cases or extensive applications.

4. Unavoidable imperfect in the software development

The community of software development looks for the innovation methods. As the first step, we must
properly explain the phenomenon in the reality from the different viewpoints.

a) Platform

Now it is too complex to characterize the true situations of the platform, such as tmpacts of power,
temperature, electromagnetic induction, radiation, integration structure, compatible ¢ but not same)

4

components (or parts) from different vendors or different manufacturing series of same vendor, quickly
upgrading parts/systems, manufacture qualities, design assumptions, wire impacts and etc. Even if we
do not consider the errors or faults, people could image how serious incidents caused from the platforms,
which composed by the compatible software components based on compatible hardware and compatible
drive programs. The incidents could be emerged in repeatable or unrepeatable ways, which caused by
accumulating (or directly) many or less, and big or little tiny differences. The software patches in our
daily are also the double-edged swords, which resolve current issues as well as insert potential issues.
Activities of system maintenance would also bring serious problems of unreliable and unstable. We
conclude that the development platform cannot be perfect to announced behaviors.

b) Working goal and related messages:

The goal of the project should conform to the user requirements according to the software development
methods. In the reality, it is not realistic if the goal of the project only conforms to user satisfaction
without the (money, mental, etc) interests of the development companies. Usually, goals of the project
reflect the multi-viewpoints related. Some researchers indicate that the number of the viewpoints would
be ever unaccountable.

We know that the most important thing is to define goals of project. Usually, “XX goals” or the finite
goal trees are one with fuzzy, abstract, and un-concrete style of different understanding among the
people evolved. Brief descriptions are benefit to the imagination space of creative works. The side effects
of brief descriptions lead to misunderstanding and inconsistence among people with different
backgrounds. Extensive descriptions are benefit to the more accurate definitions for reducing the
misunderstanding and inconsistence from one side, but with the worse side effects resulted from larger
volumes. The most of the technology focuses on the visible parts without considering the implications in
documents, agreements, communication and artifacts of the project. All above mean that project goals
and related messages are imperfect for developers.

¢) Organization and people

Software development processes demand the visibility for management control and execution, Visibility
is the special representation of the known. Strategy and tactics consideration of commercial interests, the
protection of intelligent right, and lack of time/cost/capability are obstacles and limitations to acquire
necessary knowledge. For example, the openness and transparency drives the demands of interoperability
of the distributed systems, but we cannot dream to implement completely on the current common
foundation, such as patents.

People directly work for the objective goals and use the existed materials and self/group-talents to
guide software project processes, It is ideal that the capability of developers should be good at their
tasks, and results from training courses and experiences, which imply the repeatable and directly
helpful/useful knowledge by training and self-experiencing. However, the difficulty is how directly
evaluate the past developing processes and products. Usually the measurements always delay.
Organizations and developers are very difficult to get the concrete, direct, simple, and feasible working
guides for the new complex systems. They have to select, amend, relearn, adapt, and ever create new
approaches, The implicit and not timely guides become the imperfect guidance to the tasks.

d) Testing reaction and debugging

According to the traditional methods, the test plan designed is directly after the completion of
requirement specification. It represents the known about the system.

How about the “non-known”, except the known?

Let us analyze the system and circumstance complexities. There are many kind of the hided or
unknown information. Such as the complete knowledge about the project, circumstance, customers,
organization, and platform; the inherent and potential faults of the platforms; some reactions of
intelligent components; the abnormal events caused by virus/ hackers or faults; intelligent copyrights;
commercial interests; the actual effects linked with openness/ transparency advertiscments; different
culture backgrounds and development errors interweave into the extreme complexity. The features
related to the unknown cannot be included in the test plan. It is out of control to development team and

5

testers.

Software testing is determined by comparing actual output and expected output under certain input,
which make the decision if the “tested” is reaching the pre-fixed (planned) goal. In addition, the
traditional testing theories say that it is undeterminable if system is acceptable when passing test, but
how to determinc if system is acceptable under the condition of some unknown existed, when not passing
test. This testing picture is imperfect. Tt is difficult or unfair to make decision only by passing test or
not, and how to handle the testing, and make proper reaction when testing failure?

e) Methodology

Every software development methods seemed OK at its beginning, but followed with the endless
improvements and increasing volumes during their executing and practices.

The ideal process of improvements consists with identifying faults during their executing; developing
new improvements for resolving specific faults, and integrating them into the original. “Integrating” may
act as a patch in the current softwarc. The classical test theory declares the picture: fixing a bug might
bring more bugs into the system. The patches could fix the bugs, and may bring new or potential bugs,
especially if patches not passed by the complete testing. We know that the complete testing is
impossible. The patch style affects the positive results only if it is within the view of testers or within
very narrow domains. The negative effects of patches also existed. It would bring new issues in the
broader domains, and be out of the view of maintainers and testers. The further patches would make the
system with the continue proliferation commonly. Similarly, the aided tools and development
environments become complex and larger until almost uncontrollable. This phenomenon is not what we
want.

{) The psychology factors:

Pursuing success, person and group interests, preemption, marketing advertisement effects, the finite
and available resources, and the weakness of human being increases the inflated styles in software

development, which greatly enlarge the complexity and hardness of the system.

5. Concepts of Perfect ball with uncertainty relation

In the view of the traditional software engineering, system developments and improvements are relied on
the objective facts, It introduced the volume workloads useless and not timely. Now people are conscious
that the cooperative works, the consciousness, the understanding and the creative spirits of subject facts
play the more important role in the complex software development. The concepts of innovative methods
must reflect the difference from the concepts adopted in the simpler system, Now it is time to turn from
only pursuing the fine and accurate objective into the reality consisted of both subject and object.

Perfect ball is motivated and enhanced from two great thoughts: Heisenberg’s uncertainty relation and
the ancient oriental philosophies.

Heisenberg’ s uncertainty relation [6] recalls the duality, which explores the observation relation
between object and subject. In microcosms, the duality of the wave-particle reflects the mutual relation
or interference of subject, as the observer of the wave-particle, and object, as the observed of the
particlewave. Heisenberg’s observer cannot determine the position and the momentum of the observed
one simultancously, as the formula of Ax + Ap>h,

The duality in the software developments means the explicitly described objective facts companying the
implication of subject facts and hidden information related to the project. It is the uncontrollable as the
uncertainty of the software development. The named perfect ball substitutes for a perfect point as the
planned goals of project. It is the almost unreachable goal in the concepts of perfect ball for the reality of
complex or distributed systems, refer the paper titled on goals and codes in the distributed systems [7].

How we can reach the success of the project if the development target is the uncertainty as perfect
ball? Let’s recall the relationship between object and subject in software development.

From 40’s to now, object in the software development scope is the software system (artifacts) being
developed. which is looked to be the nonliving in the traditional viewpoint of software development.
Subject is developer. and it is independent to object.

Actually, both “object and subject” should grow up together. This is a very distinctive concept from
the traditional software development methodologies, which fix the capability of developers and
organizations and overlook the knowledge exchanging process between inside and outside of developers
and organizations during the life cycle of the project.

According to the most of existed technologies, the fixed capability of software developer, during the
development cycle, should be a root of the difficulty for planning and implementing of the development
mission under the very complex situation.

The capability of good developer should not be pre-fixed one during the life cycle, which increased by
absorbing the fresh knowledge outside. The capability of individuals and organizations in the software
process will be improved and enhanced for conquering the difficulty. The understanding of perfect ball
development paradise declares that the development process includes the study process as naturally
breathe process, and not only a deductive process of the mechanical style. It promotes to resolve
difficulties by learning and absorbing the new knowledge from the failures or pressures of the
unexpected.

The creative process of perfect ball itself was an example of learning and absorbing the knowledge from
outside software development scopes. The test driven method, with new testing concept, is to realize the
practice of perfect ball. The graduate student project [8] on web-based tabular information integration
acted as a test-bed of the concept of perfect ball, which improved the project progress obviously. The
case study also gained to initiate the innovative architecture issues of the system. It demoed that studying
and analyzing failures from software testing implied the new findings and fresh knowledge for the next
progress. Developers understood that the failure of testing not be the project failure if they worked
properly. Failure and success like the sunshine and raining days alternatively in the daily life. It helps to
conquer the psychology barrier of overanxious for quick results, and turn the development cfforts
towards efficiently directions. The organizations and developers can be confident to treat the failures,

pressures from the mission under very complex situation with encourage and lcarning spirits.

6. Summary

This work concludes the following:

(1) Imperfect is resulted from the uncontrollable and the unknown in software development, but
implicitly. Tt is unavoidable for the complex environments in the most methodologies.

(2) The commonality and linkage of the unrelated areas of Heisenberg’ s study and software
development is uncovered. The concepts of perfect ball are resulted from cxploring the ideas of advance
west sciences and technologies and current software reality. It is benefit to the future innovations on
many topics of softwarc enginecring as well as other scientific arena by the mutual study,
complementation, cooperation and coordination.

(3) Concepts of perfect ball clarify that the planning issues in the existed development methods are
resulted from the concepts of the deductive processes. It is important and nccessary to include the
studying process into the development instead of deductive process only during complex software
development. It promotes the vivid learning behaviors, explicitly entering subject facts, instead of the
mechanical behaviors in software developing. The innovative system structures and math tools will be the
next breakthrough.

Now “perfect ball” is just an initiation of the new concepts, The concepts of perfect ball would help to
rethink many concepts in the software development, such as software architectures, development
methodologies, testing standards. It might bring some transformation into IT industrics. More
rescarches on the fundamental issues about different philosophies, the metrics of perfect ball and its
applications nceded.

However, the modern science (such as math, physics, biology, ete) would become the powerful
intelligent resources for the challenges from software development we faced.

