

ADVANCED

o) =(O)

A. S. Philippakis
Arizona State University

Leonard J. Kazmier
Arizona State University

McGraw-huit 8ook Comp

New York St Louis San Francisco Auckland
Bogotd Hamburg Johannesburg London

Madrid Mexico Montreal New Delhi Panama

Paris Sao Paulo Singapore Sydney Tokyo Toronto

To our wives
Patricia and Lorraine

Library of Congress Cataloging in Publication Data

Philippakis, Andreas S.
Advanced COBOL.

Includes index.

1. COBOL (Computer program language)
. Kazmier, Leonard §. l. Title.
QA76.73.C25P48 001.64'24 81-17126
ISBN 0-07-049806-7 AACR2

ADVANCED COBOL

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved.

Printed in the United States of America. Except as permitted under the United
States Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

567890 DODO 8987654
ISBN 0-07-04980L-7

This book was set in Optima by Cobb/Dunlop Publisher Services Incorporated.
The editor was James E. Vastyan; the production supervisor was Leroy A. Young.
The cover was designed by jerry Wilke.

R. R. Donnelley & Sons Company was printer and binder.

See Acknowledgment on page xi. Copyrights included on this page by reference.

S

o S Bt o

PREFACE

This book has been designed to provide material beyond an introduction to
the COBOL language, and to serve as a reference for practicing professional
programmers.

The book has been developed in response to the increased role of
COBOL in college and university curricula. In most college-level programs
COBOL is included in a two- and often three-semester sequence of courses.
Yet, there is a very limited choice of text materials to support the second or
third semester in such course sequences.

Although the title and contents of this book reflect on intent to support a
more advanced study of COBOL, we have recognized the reality that in
many cases the introductory course coverage or the student retention of the
materials in that course may be minimal. For that reason Chapters 4 through
7 include a complete review of the language and can serve as either a review
or an introduction, as needed.

The book devotes an extensive amount of coverage to new concepts in
program design that go far beyond the well established ideas of structured
programming, although the latter topic is also presented and applied
throughout the text. The first three chapters deal with the new subjects of
program structure, cohesion, and design. The reader will find that these
chapters provide a comprehensive coverage of these fundamental topics.
Audiences with a firm foundation in COBOL will find the first three chapters
a solid beginning toward advanced study of the language. Others may prefer
to review Chapters 4 -7 to refresh their understanding of the language before
proceeding to the study of structure, cohesion, and design.

Chapters 8 and 9 treat more advanced language topics in the area of
numeric and character data processing and in subprogram structure and use.
Then, Chapters 10 and 11 cover the concepts and techniques of structured
programming and program testing.

The remaining chapters, 12 through 17, treat a number of separate
topics: report generation, table handling, sequential files, sorting and merg-
ing, indexed sequential files, and relative files. These chapters have been
designed to stand independently of one another, and therefore they may be

X PREFACE

covered in any order desired. It is recognized that more advanced students
will have the facility to use a book such as this eclectically, referring to
partial contents of individual chapters in any order, as needed. Thus, the
order of chapters is not a significant factor and any order can be chosen. For
example, courses that emphasize file processing may wish to study Chapters
14 through 17 early in the semester.

Special features of the book include extensive use of self-study review
items, numerous exercises, and ample use of illustrations.

The authors express their appreciation to Charles E. Stewart for his very
capable supervision of this project. We also extend thanks to several
anonymous reviewers for their comments and recommendations.

A. S. Philippakis
Leonard J. Kazmier

ACKNOWLEDGMENT

The following acknowledgment is reprinted from American National Stan-
dard Programming Language COBOL, X3.23-1974 published by the Ameri-
can National Standards Institute, Inc.

Any organization interested in reproducing the COBOL standard
and specifications in whole or in part, using ideas from this docu- :
ment as the basis for an instruction manual or for any other purpose, 1
is free to do so. However, all such organizations are requested to
reproduce the following acknowledgment paragraphs in their en-

tirety as part of the preface to any such publication (any organiza-

tion using a short passage from this document, such as in a book

review, is requested to mention ‘COBOL’ in acknowledgment of the

source, but need not quote the acknowledgment):

COBOL is an industry language and is not the property of any
company or group of companies, or of any organization or group of
organizations.

No warranty, expressed or implied, is made by any contributor or
by the CODASYL Programming Language Committee as to the ac-
curacy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programm-
ing for the UNIVAC | and I, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Trans-
lator Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar publi-
cations.

CONTENTS

PREFACE
ACKNOWLEDGMENT

1

PROGRAM STRUCTURE
Introduction

Characteristics of Good Programs
Partitioning

Hierarchies and Networks
Structure Charts

Exercises

PROGRAM COHESION
The Black Box Concept
Cohesion in Programs
Functional Cohesion
Coincidental Cohesion
Class-Oriented Cohesion
Time-Related Cohesion
Procedural Cohesion
Data-Related Cohesion
Sequential Cohesion
Levels of Cohesion
Exercises

PROGRAM DESIGN
Introduction

Content Coupling
Module Size

Span of Control
Fan-In

Levels of Decisions

CONTENTS

Inversion of Authority

Control Based on Physical Contiguity
Top-Down Design

Example of Top-Down Design
Exercises

ELEMENTS OF COBOL

COBOL Characters and Words
Data-Names

Level Numbers

Variables and Constants

Statements and Sentences

COBOL Format Specifications

The Divisions of a COBOL program

The COBOL Coding Form

The COPY Verb

The Operating System and the Execution of COBOL Programs
Summary of Common COBOL Staternents
Sample Program

Exercises

DATA DIVISION FEATURES
Introduction

The PICTURE Clause for Data Description
The PICTURE Clause for Data Editing
The BLANK WHEN ZERO Clause
Condition-Names

The VALUE Clause

Qualification

Multiple -Data Records

The REDEFINES Clause

The RENAMES Clause

The CURRENCY and DECIMAL-POINT Clauses
Exercises

IMPERATIVE STATEMENTS
Introduction

File Input and Output

WRITE with the LINAGE Clause
The ACCEPT and DISPLAY Verbs
Arithmetic Verbs

The COMPUTE Verb

Arithmetic Precision

54
55
57
60
64

67
67
69
74
76
80
81
84
87
88
92
94
103
106

111
111
114
121
130
130
132
133
136
138
140
142
143

149
149
149
153
156
158
163
167

10

Data Transfer

The MOVE CORRESPONDING
The PERFORM Verb

Exercises

CONDITIONAL STATEMENTS
Introduction

Relation Conditions

Nested Conditions

Class Conditions

Using Conditionals to Check Input Data
Sign Conditions

Condition-Name Conditions

Complex Conditions

Exercises

NUMERIC AND CHARACTER DATA
Data Representation

The USAGE Clause

The SYNCHRONIZED Clause
Alphabets and Collating Sequences
The JUSTIFIED RIGHT Clause

The STRING and UNSTRING Verbs
The INSPECT Verb

Exercises

SUBPROGRAMS

Introduction

Calling and Called Programs
Subprogram Data Linkage

Transfer of Control

Sample Main and Subprogram Structure
Exercises

STRUCTURED PROGRAMMING

Introduction

Three Basic Program Structures

Additional Program Structures

Formatting Rules for Programs

Program Layout

Converting Unstructured Programs to Structured Form
Exercises

CONTENTS

v

176
178
180
185

193
193
194
196
207
209
212
213
214
216

221
221
226
230
232
240
241
248
252

255
255
257
262
269
272
281

283
283
284
287
290
294
299
309

vi

L

12

13

14

CONTENTS

PROGRAM TESTING

Introduction

Top-Down Program Development and Testing
Bottom-Up Program Development and Testing
Top-Down vs. Bottom-Up Approaches to Testing
Testing Procedures

Common Errors

COBOL Debugging Feature

Exercises

REPORT GENERATION

Introduction

Control Breaks in Report Writing

Logic of Report Programs

The Report Writer Feature—A Basic Example

Report Writer with Control Breaks

Report Writer Using Declaratives

Language Specifications for the COBOL Report Writer
Exercises

TABLE HANDLING

Table Definitions in COBOL

An Example of a Table of Constant Values
The OCCURS ... DEPENDING ON Option
The PERFORM Verb and Table Handling
Sample Program with a Two-Dimensional Table
Sample Program with Graphic Output

Table Searching

COBOL Language Options in Table Searching
Sample Program with Indexing and Searching
Exercises

SEQUENTIAL FILES

File Organization

File Labels

Record Blocking

COBOL Instructions for Sequential Files

Sample Program to Create a Sequential File

/O Exception Processing

Master File Maintenance

A General Programming Model for Updating Sequential Files
Transaction Records and File Maintenance

313
313
316
320
322
323
328
334
341

343
343
345
347
350
364
376
380
386

389
389
397
398
400
403
405
408
414
421

424

433
433
435
439
444
454
454
461
467
472

CONTENTS

Activity Ratios and File Maintenance
Exercises

15 SORTING AND MERGING
Introduction
Internal Sorting
COBOL File-Sort Feature
SORT Statement Formats
File Merging
File Merging in COBOL
Exercises

16 INDEXED SEQUENTIAL FILES
Introduction
Indexed Sequential File Organization
Adding Records to an Indexed Sequential File
Sequential and Random Access with an Indexed Sequential File
VSAM—AnN Alternate Index Structure
An Example of the Creation of an Indexed File
COBOL Language Instructions for Indexed Files
An Example of Processing an Indexed File
Exercises

17 RELATIVE FILES
Relative File Organization
The Division Remainder Method
Other Key-to-Address Transformation Methods
COBOL Statements for Relative Files
An Example of Creating A Relative File
An Example of Updating A Relative File
Exercises

APPENDIX A

ANS COBOL RESERVED WORDS
APPENDIX B

COMPLETE ANS COBOL LANGUAGE FORMATS
INDEX

vii

476
479

489
489
489
498
505
509
513
516

521
521

521

526
530
532
537
540
548
549

555
555
558
561
564
567
570
576

579

583
603

1

Program structure

INTRODUCTION

CHARACTERISTICS OF GOOD PROGRAMS
PARTITIONING

HIERARCHIES AND NETWORKS
STRUCTURE CHARTS

EXERCISES

INTRODUCTION

During the past decade the concepts of structured programming were
developed based on the collective experiences of practicing programmers.
Structured programming emphasizes the principles and methods for de-
veloping good program code. As such, the approach has been very benefi-
cial in increasing the productivity of programmers, but has fallen short in
terms of the broader objective of developing good programs. Perhaps an
analogy from another field would be useful. In the context of constructing a
building we could say that structured programming is the counterpart of
developing improved methods of constructing walls, floors, ceilings, and the
like. But an architectural plan is needed to identify the various rooms and
spaces and to consider their interrelationships in terms of the total design of
the building. What is needed in the field of programming is the counterpart
of the architectural plan in the construction of a building.

The major new programming developments of the current decade are
likely to be in the area of program structure and design. From this viewpoint,

2 PROGRAM STRUCTURE

the principal objectives are to identify the functions that constitute a pro-
gram and to map the interrelationships among these functions. The result is
then a purposeful, coordinated structure that can be implemented in pro-
gramming code. The concepts of program structure and design are recent
developments that continue to be reshaped and refined. Nevertheless, the
present state of development of these concepts, as presented in this book,
will serve as a conceptual foundation for continued developments in this
field.

The present chapter considers the concept of program structure as it
relates specifically to COBOL programming. Chapter 2, “’Program Cohe-
sion,” describes the properties associated with good modules. Finally, Chap-
ter 3, “Program Design,’”” presents operational guidelines for achieving
well-designed programs.

CHARACTERISTICS OF GOOD PROGRAMS

As discussed above, the first three chapters of this text are concerned
with program design. Specifically, we describe concepts and methods for
developing well-designed programs. However, good program design is not
the uitimate objective. The end result being sought is a written, functioning
program. Therefore the ultimate objective in programming is to develop
good programs, and we study program design as a foundation for program
development.

The first and usually most important characteristic of a good program is
that it be correct. The program should carry out the task for which it was
designed and do so without error. In order to achieve this objective, a
complete and clear specification of the purpose and functions of the pro-
gram must be obtained. Thus, program “errors’ can be due to outright
mistakes on the part of a programmer, or be due to a lack of a clear descrip-
tion regarding the required output of the program.

The second characteristic of a good program is that it be understand-
able. Although a computer program is a set of instructions for a computer, it
should also be comprehensible to other people. A person other than the
author should be able to read and understand the purpose and functions of
the program. Higher-level programming languages such as COBOL are in-
tended for human use and interpretation in their direct form, and are in-
tended for machine use only indirectly, through compilation.

Next, a computer program should be easy to change. Changes in prod-
ucts, changes in company procedures, new government regulations, and the
like all lead to the necessity of modifying existing computer programs. As a

CHARACTERISTICS OF GOOD PROGRAMS 3

consequence, most established computer installations devote considerable
time and effort to changing existing programs. Thus, a good program not
only fulfills its original purpose, but also is easily adaptable in response to a
changing environment.

The fourth characteristic of a good program is that it be written effi-
ciently, which concerns the amount of time spent in writing the program. Of
course, this objective is secondary to the program being correct, under-
standable, and easy to change. In practice, the easiest way to write a pro-
gram quickly is to write it partly correct, leave it difficult to understand, or
atlow its obscurity to make it difficult to change. Still, the principal cost of a
programming project is the programmer’'s time, and programming tech-
niques which economize this time while still satisfying the objectives that
the program be correct, understandable, and easy to change are preferred.

The final characteristic of a good program which we consider is that it
should execute efficiently. The program should be so written that it does not
use more computer storage nor more computer processing time than is
necessary. Again, this objective also is secondary to the primary objectives
that a program be correct, understandable, and easy to change. Furthermore,
as hardware costs have decreased relative to programmers’ salaries, overall
cost considerations often justify minimizing the concern about a high level
of efficiency in program execution. Nevertheless, a programmer should be
alert to the techniques by which efficient program execution can be
achieved.

REVIEW

1 The most important characteristic of a good computer program is that it
be
correct

2 Probable reference to the program by individuals other than the original
programmer dictates that it shouldbe ______ while unavoidable
changes in data processing requirements in most organizations make it
desirable that the program be .

understandable; easy to change

3 In order to economize the programmer’s time, a program should be
—efficiently; in order to economize the use of computer
hardware, the program should ___________ efficiently.

written; execute

4 PROGRAM STRUCTURE

PARTITIONING

A fundamental concept of program design is that of partitioning, which
refers to the process of subdividing a large programming task into smaller
parts or functions.

Partitioning is a pervasive phenomenon in human activities. One com-
mon form of partitioning in organizations is based on the division of labor, or
functional specialization. For example, an automobile manufacturing plant
includes departmental units which may be further subdivided according to
specific functions. A Painting Department, for instance, could include such
separate functions as cleaning, spraying, baking, inspecting, and the like.
Similarly, an Electronic Data Processing Department could include such
separate functions as programming, systems analysis, data entry, and input-
output control. The common occurrence of partitioning in a variety of situa-
tions is reflective of the physical and mental limits of human beings. A given
person can only do so much and attend to so much at a given time. There-
fore, we find it not only beneficial, but also necessary, to partition large and
complex tasks into smaller and more specialized tasks.

A computer programming task generally is complex enough to make
partitioning desirable. From the standpoint of the individual programmer,
the partitioning of the overall task allows the programmer to concentrate on
particular program functions. From the standpoint of the organization, parti-
tioning makes it possible to complete complex programming tasks in a
shorter time by having a team of programmers working simultaneously on
different specific tasks that constitute the overall program.

In the context of computer programming, a widely used term associated
with partitioning is modularity. A program module is a well-defined pro-
gram segment. Modular programming has been recognized as a desirable
practice for many years. In practice, all programs include some degree of
modularity by necessity: no programmer can write a monolithic program
that is not partitioned into some kinds of parts, or modules. Thus, it is not just
presence of modularity that is important. Rather, we need to develop an
understanding of how to design programs whose modules are so constructed
as to lead to good programs, where “‘program goodness” is defined by the
attributes discussed in the preceding section of this chapter.

To be useful, a module should not only be a program segment, but a
well-defined program segment. More specifically, a module should be a
named program segment that carries out a specific program function. In the
context of COBOL programming, a module eventually is represented in one
of four forms in the program:

1 As a single paragraph
2 As a series of two or more consecutive paragraphs which are the object

HIERARCHIES AND NETWORKS 5

of a PERFORM PA THRU PZ, where PA and PZ stand for the first and last
paragraphs

As a single section

4 As a program subroutine

w

REVIEW

1 The process of subdividing a large programming task into smaller, more

specific tasks is called
partitioning

2 In terms of human endeavors, partitioning is a {long-standing/recently
developed] concept.
long-standing

3 “A named program segment that carries out a specific program function”’
is a definition of a program
module

4 Program modularity can be described as being effective when it leads to
the developmentof ________ programs.
good

HIERARCHIES AND NETWORKS

As described in the preceding section, partitioning is the process by
which a large programming task can be subdivided into smaller parts. But
there must be an integrating force in order to attain coordinated results with
respect to the parts. This force is provided by structure, which refers to the
identification of system components and their interrelationships. The two
basic forms of structure are hierarchies and networks.

Hierarchies are often referred to as tree structures, especially in the
context of data bases. A hierarchy, or tree, is a structure such that there is a
single module at the top with one or more subordinate modules. The singu-
lar top module is superordinate or superior to its subordinate modules, and
these subordinate modules may themselves have additional subordinate
modules to which they are superior. Any given module can be subordinate
to only one superior, but may be superordinate to one or more subordinate
modules. Figure 1-1 portrays a typical hierarchical structure. As can be

6 PROGRAM STRUCTURE

Level O A

Level 1 B C

Level 2 D H |
Level 3 E F G

FIGURE 1-1 REPRESENTATION OF HIERARCHY (TREE) STRUCTURES.

observed, the single module A is at the top (level 0) of the structure. This
module has two subordinate modules, B and C, which comprise level 1 in
the hierarchy, and which have further subordinates. The designation of
superordinates and subordinates constitutes the specification of the relation-
ships. Two basic characteristics of any hierarchy structure is that there is a
single superordinate module for the entire hierarchy and that there is only
one superordinate module for each subordinate module.

As contrasted to a hierarchy structure, in a network structure there is no
single module that is superordinate to all others, and relationships among
modules are unrestricted. In other words, two modules may relate to each
other in both directions, so that we cannot say that one is superordinate to
the other. Figure 1-2 includes two examples of networks. In the first network
module A is superior to all three of the other modules B, C, and D, as
indicated by the direction of the arrows. But notice that B is also subordinate
to C and C is also subordinate to D, which violates the rule for hierarchies
that a subordinate should have only one superordinate. The second diagram
in Figure 1-2 illustrates a network in which every possible relationship is

