Microbial Toxins

Edited by

Alex Ciegler

Northern Regional Research Laboratory Agricultural Research Service United States Department of Agriculture Peoria, Illinois

Solomon Kadis Samuel J. Ajl

Research Laboratories Albert Einstein Medical Center Philadelphia, Pennsylvania

VOLUME VI

FUNGAL TOXINS

1971

ACADEMIC PRESS • NEW YORK AND LONDON

COPYRIGHT © 1971, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED
NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM,
BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY
OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM
THE PUBLISHERS.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DD

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 78-84247

PRINTED IN THE UNITED STATES OF AMERICA

Preface

The capacity of fungi to produce toxic metabolites has been known since the turn of the century. As early as 1913, Alsberg and Black of the U. S. Department of Agriculture conjectured that the products of mold growth might be involved in diseases. Certainly the first described form of a mycotoxicosis, ergotism, has been known to man for much of his recorded history. In the nineteenth century, molds were recognized as somehow being responsible for outbreaks of disease such as vellow rice toxicosis in Japan and alimentary toxic aleukia in Russia. In modern times, the ability of fungi to synthesize highly toxic compounds was noted during extensive screenings of microorganisms for antibiotic production, but the significance of these findings was not fully appreciated. However, the eruption of "turkey X" disease in England in 1960, followed by the discovery of the aflatoxins, resulted in a drastic reappraisal of the mycotoxin problem. Surveys of foods and feeds revealed that the problem was worldwide, rather than confined to any geographical area. In addition to the aflatoxins, other mycotoxins, for example, ochratoxin, sporidesmins. and zearalenone, were soon discovered, and this area of research expanded at an almost explosive rate as indicated by the rapid accumulation of a massive literature. The implication of the mycotoxins, aflatoxin, sterigmatocystin, and penicillic acid, as carcinogens added another dimension to the problem. In a world already sensitive to a threatened ecology, the finding of still another menace to its food and feed supply resulted in a great outburst of research.

In contrast to mycotoxin research, investigations on toxins produced by algae have not been quite as extensive or perhaps as fruitful. Nevertheless, a number of algal toxins have been isolated, obtained in highly purified form, and adequately characterized. These toxins have practical significance insofar as many of them are toxic for gill-breathing animals and for man and experimental animals via their consumption of shellfish and other aquatic organisms. One of the most intensively studied of the algal toxins is that produced by *Prymnesium parvum*. Because of the great variety of biological activities that it exhibits, such as toxicity to gill-breathing animals, lysis of erythrocytes, cytotoxicity to various cell types (such as Ehrlich ascites cells, liver cells, and amnion cells), and pharmacological activities on muscle and nerve preparations, it has numerous potential applications.

Despite the great volume of research already reported, the field of mycotoxin research is still in its infancy. This conclusion is also applicable to the algal toxins. Consequently, the purpose of Volumes VI-VIII on

XII PREFACE

algal and fungal toxins in this multivolume treatise on microbial toxins is to review comprehensively and critically the investigations that have been carried out to date and to emphasize those areas that need additional research. It is hoped that these volumes will encourage scientists in various disciplines such as microbiology, biochemistry, epidemiology, pharmacology, toxicology, medicine, and related fields to devote themselves to some of the productive lines of research that are indicated.

Because of the extensiveness of the literature on algal and fungal toxins, it was necessary to publish three volumes in order to present, comprehensively, current and past information. Hence, the algal and fungal toxins were arbitrarily divided into three groups, but with no implication intended that the toxins in any given group are related with respect to structure, function, mode of action, or biosynthesis. This volume includes the toxins produced by the Aspergilli and Penicillia; Volume VII covers the algal toxins and the fungal toxins produced by species belonging to the genera Fusarium, Rhizoctonia, and Pithomyces. Volume VIII encompasses the toxins produced by the fungal phytopathogens, the mushrooms, and those toxins synthesized in plants in response to fungal invasion or other injury.

We have attempted to include all the known mycotoxins in these volumes. However, we recognize that the rapidity with which the field is developing will unavoidably result in omission of new toxins and information on currently known toxins that has accumulated since these volumes have gone to press.

We wish to thank the contributors for their cooperation and the staff of Academic Press for their advice and practical assistance.

ALEX CIEGLER SOLOMON KADIS SAMUEL J. AJL

Contents of Other Volumes

Volume I: Bacterial Protein Toxins Edited by

S. J. Ajl, S. Kadis, and T. C. Montie

General Characteristics

W. E. van Heyningen

The Nomenclature of Microbial Toxins: Problems and Recommendations Peter F. Bonventre

Intracellular versus Extracellular Toxins
Marcel Raynaud and Joseph E. Alouf

Isolation and Purification of Bacterial Toxic Proteins
Joseph E. Alouf and Marcel Raynaud

Cytolytic Toxins of Bacteria Alan W. Bernheimer

Relationship of Lysogeny to Bacterial Toxin Production John B. Zabriskie

Role of Toxins in Host-Parasite Relationships

Tissue Culture and Bacterial Protein Toxins Morris Solotorovsky and William Johnson

Pharmacology of Bacterial Protein Toxins Helena Raškova and Karel Mašek

Relative Toxicities and Assay Systems C. L. Oakley

Immunology of Bacterial Protein Toxins C. L. Oakley

Relationship of Bacterial Structure and Metabolism to Toxin Production Iwao Kato

Uptake of Bacterial Protein Toxins by Cells
I. Mesrobeanu, Lydia Mesrobeanu, and C. Bona

AUTHOR INDEX-SUBJECT INDEX

Volume IIA: Bacterial Protein Toxins Edited by S. Kadis, T. C. Montie, and S. J. Ajl

Botulinum Toxin
Daniel A. Boroff and Bibhuti R. DasGupta

xiii

Tetanus Toxin

W. E. van Heyningen and Jane Mellanby

Type A Clostridium perfringens Toxin

M. V. Ispolatovskaya

Clostridium perfringens Toxins Type B, C, D, and E Andreas H. W. Hauschild

Cholera Toxins

John P. Craig

The Exotoxin of Shigella dysenteriae

W. E. van Heyningen

Protein Toxins from Bordetella pertussis

J. Munoz

Salmonella typhimurium and Escherichia coli Neurotoxins Lydia Mesrobeanu and I. Mesrobeanu

Toxins of Proteus mirabilis

Krystyna Izdebska-Szymona

Listeria monocytogenes Toxins

C. P. Sword and G. Charles Kingdon

AUTHOR INDEX-SUBJECT INDEX

Volume IIB: Bacterial Protein Toxins Edited by

S. Kadis, T. C. Montie, and S. J. Ajl

Diphtheria Toxin

A. M. Pappenheimer, Jr.

AUTHOR INDEX-SUBJECT INDEX

Volume III: Bacterial Protein Toxins Edited by

T. C. Montie, S. Kadis, and S. J. Ajl

Nature and Synthesis of Murine Toxins of Pasteurella pestis Thomas C. Montie and Samuel J. Ajl

Site and Mode of Action of Murine Toxin of Pasteurella pestis Solomon Kadis and Samuel J. Ajl

Streptolysin O

Seymour P. Halbert

Streptolysin S

Isaac Ginsburg

Erythrogenic Toxins

Dennis W. Watson and Yoon Berm Kim

Staphylococcal α -Toxin

John P. Arbuthnott

The Beta- and Delta-Toxins of Staphylococcus aureus Gordon M. Wiseman

Enterotoxins

Merlin S. Bergdoll

Staphylococcal Leukocidin

A. M. Woodin

Addendum - Production of Test Toxin of P-V Leukocidin R. Elsworth and K. Sargeant

Anthrax Toxin

Ralph E. Lincoln and Donald C. Fish

Bacillus cereus Toxin

Peter F. Bonventre and Charles E. Johnson

Bacillus thuringiensis Toxins—The Proteinaceous Crystal Marguerite M. Lecadet

Toxins of Pseudomonas

Robert J. Heckly

The Toxins of Mycoplasma

Evangelia Kaklamanis and Lewis Thomas

AUTHOR INDEX-SUBJECT INDEX

Volume IV: Bacterial Endotoxins Edited by

G. Weinbaum, S. Kadis, and S. J. Ajl

General Characteristics

Kelsey C. Milner, Jon A. Rudbach, and Edgar Ribi

The Anatomy and Chemistry of Gram-Negative Cell Envelopes John H. Freer and Milton R. J. Salton

The Physical Structure of Bacterial Lipopolysaccharides Joseph W. Shands, Jr.

Isolation and Chemical and Immunological Characterization of Bacterial Lipopolysaccharides

Otto Lüderitz, Otto Westphal, Anne-Marie Staub, and Hiroshi Nikaido

The Chemistry of the Unique Carbohydrates of Bacterial Lipopolysaccharides

Gilbert Ashwell and Jean Hickman

The Relation of Bacteriophage Attachment to Lipopolysaccharide Structure

Annette M. C. Rapin and Herman Kalckar

Chemical and Biological Heterogeneity of Endotoxins Alois Nowotny

Biosynthesis of the "Core" Region of Lipopolysaccharide Mary Jane Osborn and Lawrence I. Rothfield

Biosynthesis of O-Antigens

Phillips W. Robbins and Andrew Wright

Genetic Aspects of Biosynthesis and Structure of Salmonella Lipopolysaccharide

Bruce Stocker and P. Helena Mäkelä

AUTHOR INDEX-SUBJECT INDEX

Volume V: Bacterial Endotoxins Edited by S. Kadis, G. Weinbaum, and S. J. Ajl

The Relationship of Lipopolysaccharide Structure to Bacterial Virulence Robert J. Roantree

Importance of Blood Group and Forssman Antigenic Determinants in Interactions between Man and Microbes

Georg F. Springer

Chemical Modification of Lipopolysaccharide and Inactivation of Its Biological Properties

Barnet M. Sultzer

Effects of Endotoxin Lipopolysaccharides on the Complement System Henry Gewurz, Ralph Snyderman, Stephan E. Mergenhagen, and Hyun Seung Shin

Host-Dependent Neutralization and Detoxification of Endotoxin Robert C. Skarnes and Fred S. Rosen

Metabolic Effects of Bacterial Endotoxins
L. Joe Berry

Release of Vasoactive Agents and the Vascular Effects of Endotoxin Lerner B. Hinshaw

Addendum—The Effects of Endotoxins in the Microcirculation B. Urbaschek

Endotoxin and the Pathogenesis of Fever

E. S. Snell

Experimental Hemorrhagic and Endotoxic Shock

Arnold L. Nagler and Stanley M. Levenson

Effects of Lipopolysaccharides (Endotoxins) on Susceptibility to Infections

Leighton E. Cluff

Role of Hypersensitivity and Tolerance in Reactions to Endotoxin Louis Chedid and Monique Parant

AUTHOR INDEX-SUBJECT INDEX

Volume VII: Algal and Fungal Toxins Edited by

S. Kadis, A. Ciegler, and S. J. Ajl

Section A Algal Toxins

The Dinoflagellate Poisons

Edward J. Schantz

Blue-Green and Green Algal Toxins

John H. Gentile

Toxins of Chrysophyceae

Moshe Shilo

Section B Fungal Toxins, Toxins of Fusarium

F-2 (Zearalenone) Estrogenic Mycotoxin from Fusarium

C. J. Mirocha, C. M. Christensen, and G. H. Nelson

Alimentary Toxic Aleukia

A. Z. Joffe

Toxin-Producing Fungi from Fescue Pasture

Shelly G. Yates

12.13-Epoxytrichothecenes

James R. Bamburg and Frank M. Strong

Toxins of Fusarium nivale

Mamoru Saito and Takashi Tatsuno

Section C

Rhizoctonia Toxin (Slaframine)

H. P. Broquist and J. J. Snyder

Section D

The Toxicology of Sporidesmins and Other Epipolythiadioxopiperazines
Alan Taylor

AUTHOR INDEX-SUBJECT INDEX

Volume VIII: Fungal Toxins Edited by S. Kadis, A. Ciegler, and S. J. Ail

Section A

The Isolation and Identification of the Toxic Coumarins Donald E. Richards

The Biological Action and Metabolism of the Toxic Coumarins Lester D. Scheel

The Natural Occurrence and Uses of the Toxic Coumarins Vernon B. Perone

Section B

Stachybotrys Toxin
Joseph Forgacs

Section C Phytotoxins

Phytopathogenic Toxins

H. H. Luke and V. E. Gracen, Jr.

Helminthosporium Toxins

H. H. Luke and V. E. Gracen, Jr.

Alternaria Toxins Related to Pathogenesis in Plants

G. E. Templeton

A Phytotoxin from Didymella applanata Cultures

C. A. Salemink and F. Schuring

Compounds Accumulating in Plants after Infection Joseph Kuć

The Toxic Peptides of Amanita Species
Theodor Wieland and Otto Wieland

Mushroom Toxins Other than Amanita

Robert G. Benedict

Ergot

D. Gröger

AUTHOR INDEX-SUBJECT INDEX

Introductory Remarks

Algal and fungal toxins comprise a wide array of naturally occurring toxic compounds in the aquatic and terrestrial environment. Their extent and the significance of their evoked toxicoses in various species have only been fully recognized within the last decade.

Some highly potent toxic compounds have been identified among these algal and fungal toxins, but the mycotoxins, perhaps due to the more intensive research on their structure, are the more completely characterized. Of the poisons produced by various species of algae thus far, only a few have been isolated in pure form and characterized. One of these is from a blue-green alga Microcystis aeruginosa (1) and another from the dinoflagellate Gonyaulax catanella (2). Structurally, the first toxin referenced above is a cyclic polypeptide while the second (saxitoxin) is a substituted purine base. The striking features of some of these toxins, for example, the one from M. aeruginosa called FDF (fast death factor), are their lethal effects in less than 30 minutes in experimental animals and their production of paralysis and death in man. At the present time, no effective antidote is known for these shellfish poisons. However, the toxic effect can be reduced by administration of ethanol and sodium chloride to poisoned individuals, followed by artificial respiration. Apparently these poisons are not antigenic, but it has been demonstrated that they can be used as haptens to immunize an animal against the poison (3). Ciguatera toxin challenge to man appears at times when man eats tropical fish that have consumed toxin-producing algae. Many other toxins, which become poisonous to mussels and clams and subsequently to man consuming shellfish, have been studied in their crude form only.

Since many species of algae that may represent a potential food supply produce toxins and because the toxins formed from other algae threaten the existence of edible marine organisms by massive destruction, the sporadic occurrence of these toxins causes an economic problem as well as a serious human health problem. This could become more acute as the world population increases and becomes more dependent upon food from the sea. If the processing of fish for fish protein concentrate becomes indiscriminate relevant to selectivity of fin fish types, a problem of inadvertent introduction of marine biotoxins into this important marine protein source could arise. On the other hand, as intensive pharmacological research proceeds on these marine biotoxins, it is conceivable that important biosynthetic intermediates as products in the metabolism of marine organisms may be uncovered, which will prove efficacious in drug development programs for their pharmacodynamic action and therapeutic value.

Mycotoxicoses, representing a situation more specifically associated with occasional contamination of foodstuffs and feed, have existed for many years. However, mold-induced deterioration of foods and feeds has, until recently, focused primarily upon the resultant economic losses associated with deterioration of the quality of commodities and not as a health hazard per se. The occurrence of fungal metabolites appearing in food as contaminants is to be anticipated in view of the ubiquitous distribution of fungi, the possibilities for their growth during harvest, or their development during storage and handling of food and food crops. Furthermore, we have the additional problem of the biochemical capabilities of some fungal species to produce these metabolites as toxic organic molecules. Although earlier reports in the literature recorded a mycotoxicosis such as ergotism, which has been recognized for centuries, and although there are some isolated reports associated with a variety of toxicity syndromes in animals, only in the last decade has there been an increasing awareness of the potential health significance of mycotoxins as natural chemical environmental contaminants (4).

Perhaps one of the earlier reports in this country on mycotoxicoses was that of Schofield in 1924 (5) relating to poisoning in cattle induced by fungally contaminated sweet clover. However, the first systematic studies were probably initiated in the USSR around 1940. These related to stachybotryotoxicoses, primarily affecting horses and subsequently shown to be caused by a toxin in the etiology of disease in cattle, other animals, and man (6). Later, in 1953 and 1957, there were reports of diseases in cattle and swine from feeding moldy corn. The disease was reproduced subsequently by feeding fungi cultured on various substrates (7, 8). At this time, the reports of Carll and co-workers and Forgacs et al. did much to renew interest in mold intoxication investigations in the United States (9, 10).

Most of the reports prior to this period were centered on livestock toxicoses of unknown etiology and only speculated about the role played by fungi, while some scientists believed fungi and their metabolites were not injurious, if not beneficial, to animal health (11, 12, 13, 14). Apparently, these diverse earlier opinions were conditioned by the absence of good methods for isolation and identification of fungal metabolites as well as a lack of good epizoology complicated by a matrix of etiological factors associated with variant symptom complexes.

More precise studies evolved in 1955-1957 involving toxic strains of Aspergillus flavus and Penicillium rubrum, which were reported to cause a toxicosis in swine. In an area where poultry hemorrhagic syndrome was extensive (15), a toxic fungus was isolated from feed and poultry litter and was identified as that of A. flavus. About this time, a

facial eczema in sheep and cattle in New Zealand was reported to be caused by ingestion of dried pasture grass contaminated with *Pithomyces chartarum* (16).

As previously indicated, the fact that molds could indeed produce toxic metabolites had been known for many years, but the etiology of these toxic factors was ignored, thus leading to the general reference to mycotoxicoses as the neglected disease. This neglect was soon altered drastically by outbreaks of a "turkey X" disease in poultry in England in 1960 and the concurrent development of an epizootic in trout in commercial fish hatcheries fed rations later shown to be fungally contaminated (4). The acceleration of research on this problem in several countries quickly led to the isolation and identification of the aflatoxins, one of which, aflatoxin B₁, was demonstrated to be quite toxic to many animal species and one of the most potent hepatocarcinogens for the rat and trout (4). Thus, the importance of this discovery cannot be overemphasized in terms of worldwide significance relevant to potential animal and human neoplastic disease induced by dietary contaminants.

Obviously, the latter concern intensified the interest and efforts of teams of scientists with a multidisciplinary approach. These projects soon led to an elucidation of phenomena involved in acute toxicity and provided us with a clearer understanding of the relationship of intracellular response and carcinogenic expression. It is of interest that the frequency of liver disease among trout populations investigated in the United States, at least those fed commercial rations, reached an incidence of 50 to 70%. It has been assumed that this specific disease frequency among wild trout populations would be of low order, but no definite survey data are available for this comparison (4). The synergistic role of aflatoxins with components normally present in some foods and the possible potentiation by other mycotoxins, e.g., rubratoxin, have not been overlooked. For example, the cocarcinogenic effects of gossypol and cyclopropenoid fatty acids present in cottonseed meal fats with aflatoxin B₁ in the trout have been reported (17).

Due to the brilliant and classic research on the isolation, identification, and structure determination of aflatoxins, this unique group of highly oxygenated, naturally occurring heterocyclic compounds (18) are now characterized as B_1 , B_2 , G_1 , G_2 , M_1 and M_2 (milk toxins), and B_{2a} and G_{2a} . Other fungal metabolites have been similarly isolated, identified, and their structures ascertained, and will be referenced in detail in subsequent chapters. Some of these are from the Aspergillus series such as ochratoxin from A. ochraceous, aspertoxin from A. flavus, sterigmatocystin from A. versicolor (4, 19), and kotanone from A. glaucus-Kota (20). A similar series from the penicillia, to name but a few, are patulin from P. patulum,

rubratoxin from *P. rubrum*, and some of the yellow rice toxins (islandicin, iridoskyrin, rubraskyrin, skyrin, luteoskyrin, erythroskyrin); the actinomycins have also been extensively studied (21, 22).

Perhaps less well known are the furanosesquiterpenes and related metabolites. For example, a tremorgenic-diuretic mycotoxin from *P. cyclopium* (23), and ipomeamarone, characterized in Japan (24) and causing lung edema in cattle, is elaborated by the sweet potato only when fungus grows on the sweet potato and will, therefore, be classified as a microbial toxin. There may be other similar situations so classified.

Mycotoxicosis assumes worldwide significance with respect to population groups depleted in sources of protein (kwashiorkor), in which additional liver pathology may develop from dietary insults from mycotoxins. Similarly, corrective measures for malnutrition in which protein sources are used that may be fungally contaminated (legumes and cereals) could add a new dimension in geographic pathology from such a stress. Certainly, controls are required in agricultural technology and commercial processing to eliminate unfavorable conditions of storage. These include factors relevant to temperature, humidity, and the destructive processes in harvesting of any such toxic fungal products that may been produced.

Although there is a plethora of information and data on the toxicological and biochemical aspects of mycotoxin action in experimental animals, including ultrastructural effects, changes in RNA/DNA ratio, mitochondria, and template activity, there is only suggestive evidence from such investigations that may or may not provide a strong case for causal relationship between these environmental toxicants and incidence of disease in man. Epidemiological studies, supported in the sub-Sahara region of Africa and certain regions of Asia, could, for example, delineate the pathogenesis of neoplasia and other associated diseases induced by the mycotoxins. There are pieces of information that provide some support as to the implication of these agents in human health, such as alimentary toxic aleukia in Russia and yellow rice as an etiologic factor in human disease in Japan. In Africa, there is presumptive evidence that the etiology of aflatoxicoses and hepatomagenesis in the Bantu and isolated cases of disease in infants in Senegal allegedly caused by ingestion of contaminated peanut products offer no assurance that man is not equally susceptible to these hepatotoxin, as observed in other species (25).

It is hoped that the compilation of information within a single series of volumes on these natural toxins and the evaluation of the chemical, biological, and biomedical aspects of the algal and fungal toxins will increase the awareness of the problem of these environmental stresses relevant to public health. Furthermore, such a compendium provides an

excellent reference source for the future to those interested in the chemistry and toxicology of these specific natural toxic compounds not hitherto available from a single reference source.

HERMAN F. KRAYBILL
Food and Drug Administration
Department of Health, Education, and Welfare
Washington, D.C.

REFERENCES

- Bishop, C. T., Amet, E. F. L. J., and Gorham, P. R. (1959). Can. J. Biochem. Physiol. 37, 453.
- Schantz, E. J., Lynch, J. M., Voyvada, G., Matsumoto, K., and Rappoport, H. (1966). Biochemistry 5, 1191.
- 3. Johnson, H. M., Frey, P. A., Angelotti, R., Campbell, J. E., and Lewis, K. H. (1964). Proc. Soc. Exptl. Biol. Med. 117, 423.
- 4. Kraybill, H. F., and Shimkin, M. B. (1964). Advan. Cancer Res. 8, 191-248.
- 5. Schofield, F. W. (1924). J. Am. Vet. Med. Assoc. 64, 553-575.
- 6. Sarkisov, A. (1947). Veterinariya 24, 25-27.
- Sippel, W. L., Barnside, J. E., and Atwood, M. B. (1953). Proc. 90th Ann. Meeting Am. Vet. Med. Assoc. Toronto, Canada 171-181.
- Burnside, J. E., Sippel, W. L., Forgacs, J., Carll, W. T., Atwood, M. B., and Doll, E. R. (1957). Am. J. Vet. Res. 18, 817-824.
- 9. Carll, W. T., Forgacs, J., and Herring, A. (1954). Am. J. Hyg. 60, 8-14.
- Forgacs, J., Carll, W. T., Herring, A. S., and Mahlandt, B. (1954). Am. J. Hyg. 60, 15-26.
- 11. Biester, H. E., Schwarte, L. H., and Reddy, C. H. (1940). Vet. Med. 35, 636-639.
- 12. Eckles, C. H., Fitch, C. P., and Seal, J. H. (1924). J. Am. Vet. Med. Assoc. 716-722.
- 13. Gorcica, H. J., Peterson, W. H., and Steenbock, H. (1935). J. Nutr. 9, 691-714.
- 14. Petty, M. A., and Quigley, C. D. (1947). Poultry Sci. 26, 7-13.
- 15. Forgacs, J., and Carll, W. T. (1955). Vet. Med. 50, 172.
- 16. Clare, N. T. (1955). Advan. Vet. Sci. 2, 182-211.
- Lee, D. J., Wales, J. H., Sinnhuber, R. O., Ayres, J. L., and Roehm, J. N. (1967). Federation Proc. 26, 322.
- 18. Buchi, G., and Rae, I. D. (1969). In "Aflatoxin" (L. A. Goldblatt, ed.), pp. 55-75. Academic Press, New York.
- Rodricks, J. F., Henery-Logan, K. R., Campbell, A. D., Stoloff, L., and Verrett, M. J. (1968). Nature 217, 668.
- 20. Buchi, G. (1970). Personal communication.
- Perone, V. P., Scheel, L. D., and Meltus, R. J. (1963). Am. Chem. Soc. Div. Biol. Chem. Abstr. 22, 14A.
- 22. Dickens, F., and Jones, H. E. H. (1961). Brit. J. Cancer 15, 85-100.
- 23. Wilson, B. J., Wilson, C. H., and Hayes, A. W. (1968). Nature 220, 77.
- 24. Kubota, T., and Matsuura T. (1958). J. Chem. Soc., p. 3667.
- Kraybill, H. F., and Shapiro, R. E. (1969). In "Aflatoxin" (L. A. Goldblatt, ed.), pp. 401-441. Academic Press, New York.

Contents

PREFACE xi
CONTENTS OF OTHER VOLUMESxiii
Introbuctory Remarksxix
Section A Aspergillus Toxins
1. Aflatoxin and Related Compounds
R. W. DETROY, E. B. LILLEHOJ, AND A. CIEGLER
I. Introduction (Historical Structure Chemistry) 4 II. Toxin-Producing Fungi 16 III. Toxin-Affected Commodities 19 IV. Production 25 V. Analysis 42 VI. Detoxification 53 VII. Safety Procedures 67 VIII. Biosynthesis 68 IX. Pharmacology and Toxicology 90 X. Molecular Biochemistry 135 XI. Sterigmatocystin 152 XII. Summary 154 References 155
2. Ochratoxin and Other Dihydroisocoumarins
P. S. Steyn
I. Introduction 179 II. Isolation, Analysis, and Production of the Ochratoxins 182 III. Chemistry of the Ochratoxins 187 IV. Biological Effects of Ochratoxin 197 V. Biogenesis of the Ochratoxins and Their Relationship to Other Fungal 200 Dihydroisocoumarins 200 References 203
References
3. Miscellaneous Aspergillus Toxins
Benjamin J. Wilson
I. Introduction 208 II. Aspergillic Acid and Related Compounds 209 III. Kojic Acid 235 IV. β-Nitropropanoic Acid 251

CONTENTS

VI. Ho VII. O: VIII. Ti IX. Fo X. Fo	2 2 2 2 2 2 2 2 2 2	65 68 74 77 81 89
	Section B Penicillium Toxins	
Lute	owed Rice Toxins oskyrin and Related Compounds, Chlorine-Containing opounds, and Citrinin	
M T	Mamoru Saito, Makoto Enomoto, and `akashi Tatsuno	
Citre	eoviridin	
K	Kenji Uraguchi	
II. M	ntroduction	05
В	itreoviridin: Penicillium toxicarium Miyake, Penicillium citreo-viride iourge, and Penicillium ochrosalmoneum Udagawai	367 375
5. The	Rubratoxins, Toxic Metabolites of Penicillium rubrum Stoll	
	1. O. Moss	
II. PO III. G IV. T V. C VI. R VII. B	ntroduction	382 383 388 392 398 401
6. Patu	ulin, Penicillic Acid, and Other Carcinogenic Lactones	
A	A. CIEGLER, R. W. DETROY, AND E. B. LILLEHOJ	
II. P III. O	Patulin	414 420