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Preface

This book is intended for first-year graduate and advanced undergraduate courses in
quantum chemistry.
New material in the fifth edition includes:

¢ The Numerov method for numerical solution of the one-dimensional Schrédinger
equation (Sections 4.4,6.9,and 13.2)

* Linear-scaling methods (Section 15.5)

e Molecular electrostatic potentials (Section 15.8)

¢ Conformational searching (Section 15.12)

¢ Vibrational frequencies (Section 15.13)

* Thermodynamic properties (Section 15.14)

* Ab initio quantum chemistry programs (Sections 15.15 and 15.16)
e Composite methods (Section 15.21)

¢ Solvent effects (Sections 15.22 and 16.7)

e The ONIOM, IMOMO, and IMOMM methods (Section 15.26)

The following topics have been substantially expanded:

¢ Density-functional theory (Section 15.20)

¢ The molecular-mechanics method (Section 16.6)
¢ Semiempirical methods (Section 16.5)

¢ Geometry optimization (Section 15.11)

¢ Comparison of methods (Chapter 17)

The expanding role of quantum chemistry makes it highly desirable for students
in all areas of chemistry to understand modern 'methods of electronic structure calcula-
tion, and this book has been written with this goal in mind.

I have tried to make explanations clear and complete, without glossing over
difficult or subtle points. Derivations are given with enough detail to make them
easy to follow, and 1 avoid resorting to the frustrating phrase “it can be shown that”
wherever possible. The aim is to give students a solid understanding of the physi-
cal and mathematical aspects of quantum mechanics and molecular electronic struc-
ture. The book is designed to be useful to students in all branches of chemistry, not
just future quantumn chemists. However, the presentation is such that those who do go
on in quantum chemistry will have a good foundation and will not be hampered by
misconceptions.

An obstacle faced by many chemistry students in learning quantum mechanics is
their unfamiliarity with much of the required mathematics. In this text I have included
detailed treatments of operators, differential equations, simultaneous linear equations,

ix
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Preface

and other needed topics. Rather than putting all the mathematics in an introductory
chapter or a series of appendices, [ have integrated the mathematics with the physics
and chemistry. Immediate application of the mathematics to solving a quantum-
mechanical problem will make the mathematics more meaningful to students than
would separate study of the mathematics. I have also kept in mind the limited physics
background of many chemistry students by reviewing topics in physics.
This book has benefited from the reviews and suggestions of Leland Allen,
N. Colin Baird, James Bolton, Donald Chesnut, Melvyn Feinberg, Gordon A. Gallup,
David Goldberg, Warren Hehre, Hans Jaffé, Neil Kestner, Harry King, Peter Kollman,
Errol Lewars, Joel Liebman, Frank Meeks, Robert Metzger, William Palke, Gary
Pfeiffer, Russell Pitzer, Kenneth Sando, Harrison Shull, James J. P. Stewart, Richard
Stratt, Arieh Warshel, and Michael Zerner. Portions of the fifth edition were reviewed
by Steven Bernasek, W. David Chandler, R. James Cross, David Farrelly, Tracy Ham-
ilton, John Head, Miklos Kertesz, Mel Levy, Pedro Muiiio, Sharon Palmer, and John S.
Winn. Robert Gotwals’ online computational chemistry course at the North Carolina
Supercomputing Center allowed me to get experience using a supercomputer. I wish to
thank these people and several anonymous reviewers.
I would appreciate receiving any suggestions that readers may have for improv-
ing the book.
Ira N. Levine
INLevine@brooklyn.cuny.edu
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CHAPTER 1

The Schrédinger Equation

1.1 QUANTUM CHEMISTRY

In the late seventeenth century, Isaac Newton discovered classical mechanics, the
laws of motion of macroscopic objects. In the early twentieth century, physicists found
that classical mechanics does not correctly describe the behavior of very small particles
such as the electrons and nuclei of atoms and molecules. The behavior of such particles
is described by a set of laws called quantum mechanics.

Quantum chemistry applies quantum mechanics to problems in chemistry. The
influence of quantum chemistry is'evident in all branches of chemistry. Physical
chemists use quantum mechanics to calculate (with the aid of statistical mechanics)
thermodynamic properties (for example, entropy, heat capacity) of gases; to interpret
molecular spectra, thereby allowing experimental determination of molecular proper-
ties (for example, bond lengths and bond angles, dipole moments, barriers to internal
rotation, energy differences between conformational isomers); to calculate molecular
properties theoretically; to calculate properties of transition states in chemical reac-
tions, thereby allowing estimation of rate constants; to understand intermolecular
forces; and to deal with bonding in solids.

Organic chemists use quantum mechanics to estimate the relative stabilities of
molecules, to calculate properties of reaction intermediates, to investigate the mecha-
nisms of chemical reactions, and to analyze NMR spectra.

Analytical chemists use spectroscopic methods extensively. The frequencies and
intensities of lines in a spectrum can be properly understood and interpreted only
through the use of quantum mechanics.

Inorganic chemists use ligand field theory, an approximate quantum-mechanical
method, to predict and explain the properties of transition-metal complex ions.

Although the large size of biologically important molecules makes quantum-
mechanical calculations on them extremely hard, biochemists are beginning to benefit
from quantum-mechanical studies of conformations of biological molecules, enzyme-
substrate binding, and solvation of biological molecules.

Nowadays, several companies sell quantum-chemistry software for doing molec-
ular quantum-chemistry calculations. These programs are designed to be used by all
kinds of chemists, not just quantum chemists.
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1.2 HISTORICAL BACKGROUND OF QUANTUM MECHANICS

The development of quantum mechanics began in 1900 with Planck’s study of the light
emitted by heated solids, so we start by discussing the nature of light.

‘In 1801, Thomas Young gave convincing experimental evidence for the wave
nature of light by observing diffraction and interference when light went through
two adjacent pinholes. (Diffraction is the bending of a wave around an obstacle.
Interference is the combining of two waves of the same frequency to give a wave whose
disturbance at each point in space is the algebraic or vector sum of the disturbances at
that point resulting from each interfering wave. See any first-year physics text.)

About 1860, James Clerk Maxwell developed four equations, known as
Maxwell’s equations, which unified the laws of electricity and magnetism. Maxwell’s
equations predicted that an accelerated electric charge would radiate energy in the
form of electromagnetic waves consisting of oscillating electric and magnetic fields.
The speed predicted by Maxwell’s equations for these waves turned out to be the same
as the experimentally measured speed of light. Maxwell concluded that light is an elec-
tromagnetic wave. A

In 1888, Heinrich Hertz detected radio waves produced by accelerated electric
charges in a spark, as predicted by Maxwell’s equations. This convinced physicists that
light is indeed an electromagnetic wave.

All electromagnetic waves travel at speed ¢ = 2.998 X 108 m/s in vacuum. The
frequency v and wavelength A of an electromagnetic wave are related by

Av =¢ (L.1)*

(An equation with an asterisk after its number should be memorized.) Various conven-
tional labels are applied to electromagnetic waves depending on their frequency. In
order of increasing frequency are radio waves, microwaves, infrared radiation, visible
light, ultraviolet radiation, X-rays, and gamma rays. We shall use the term light to
denote any kind of electromagnetic radiation. Wavelengths of visible and ultraviolet
radiation were formerly given in angstroms (A) and are now given in nanometers
(nm):

Iom=10""m, 1A =10""m=0.1nm (1.2)*

In the late 1800s, physicists measured the intensity of light at various frequencies
emitted by a heated blackbody at a fixed temperature. A blackbody is an object that
absorbs all light falling on it. A good approximation to a blackbody is a cavity with a
tiny hole. When physicists used statistical mechanics and the electromagnetic-wave
model of light to predict the intensity-versus-frequency curve for emitted blackbody
radiation, they found a result in complete disagreement with the high-frequency por-
tion of the experimental curves.

In 1900, Max Planck developed a theory that gave excellent agreement with the
observed blackbody-radiation curves. Planck assumed that the atoms of the blackbody
could emit light energy only in amounts given by Av, where v is the radiation’s fre-
quency and h is a proportionality constant, called Planck’s constant. The value
h = 6.6 X 107%* ] - s gave curves that agreed with the experimental blackbody curves.
Planck’s work marks the beginning of quantum mechanics.

Planck’s hypothesis that only certain quantities of light energy can be emitted
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(that the emission is quantized) was in direct contradiction to all previous ideas of
physics. The energy of a wave is related to its amplitude, and the amplitude varies con-
tinuously from zero on up. Moreover, according to Newtonian mechanics, the energy
of a material body can vary continuously. Hence physicists expected the energy of an
atom to vary continuously. If one expects the energies of atoms and of electromagnetic
waves to vary continuously, one also expects the electromagnetic-radiation energy
emitted by atoms to vary continuously. However, only with the hypothesis of quantized
energy emission does one obtain the correct blackbody-radiation curves.

The second application of energy quantization was to the photoelectric effect. In
the photoelectric effect, light shining on a metal causes emission of electrons. The
energy of a wave is proportional to its intensity and is not related to its frequency, so
the electromagnetic-wave picture of light leads one to expect that the kinetic energy of
an emitted photoelectron would increase as the light intensity increases but would not
change as the light frequency changes. Instead, one observes that the kinetic energy of
an emitted electron is independent of the light’s intensity but increases as the light’s
frequency increases.

In 1905, Einstein showed that these observations could be explained by regard-
ing light as composed of particlelike entities (called photons), with each photon having
an energy

Ephoton = hv (1.3)*

When an electron in the metal absorbs a photon, part of the absorbed photon energy is
used to overcome the forces holding the electron in the metal, and the remainder
appears as kinetic energy of the electron after it has left the metal. Conservation of
energy gives hv = ® + T, where @ is the minimum energy needed by an electron to
escape the metal (the metal’s work function), and T is the maximum kinetic energy of
an emitted electron. An increase in the light’s frequency v increases the photon energy
and hence increases the kinetic energy of the emitted electron. An increase in light
intensity at fixed frequency increases the rate at which photons strike the metal and
hence increases the rate of emission of electrons, but does not change the kinetic
energy of each emitted electron.

The photoelectric effect shows that light can exhibit particlelike behavior in addi-
tion to the wavelike behavior it shows in diffraction experiments.

Now let us consider the structure of matter.

In the late nineteenth century, investigations of electric discharge tubes and nat-
ural radioactivity showed that atoms and molecules are composed of charged particles.
Electrons have a negative charge. The proton has a positive charge equal in magnitude
but opposite in sign to the electron charge and is 1836 times as heavy as the electron.
The third constituent of atoms, the neutron (discovered in 1932), is uncharged and
slightly heavier than the proton.

Starting in 1909, Rutherford, Geiger, and Marsden repeatedly passed a beam of
alpha particles through a thin metal foil and observed the deflections of the particles
by allowing them to fall on a fluorescent screen. Alpha particles are positively charged
helium nuclei obtained from natural radioactive decay. Most of the alpha particles
passed through the foil essentially undeflected, but, surprisingly, a few underwent large
deflections, some being deflected backward. To get large deflections, one needs a very
close approach between the charges, so that the Coulombic repulsive force is great. If
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the positive charge were spread throughout the atom (as J. J. Thomson had proposed in
1904), once the high-energy alpha particle penetrated the atom, the repulsive force
would fall off, becoming zero at the center of the atom, according to classical electro-
statics. Hence Rutherford concluded that such large deflections could occur only if the
positive charge were concentrated in a tiny, heavy nucleus.

An atom contains a tiny (107" to 107'2 cm radius), heavy nucleus consisting of
neutrons and Z protons, where Z is the atomic number. Outside the nucleus there are
Z electrons. The charged particles interact according to Coulomb’s law. (The nucleons
are held together in the nucleus by strong, short-range nuclear forces, which will not
concern us.) The radius of an atom is about one angstrom, as shown, for example, by
results from the kinetic theory of gases. Molecules have more than one nucleus.

The chemical properties of atoms and molecules are determined by their elec-
tronic structure, and so the question arises as to the nature of the motions and energies
of the electrons. Since the nucleus is much more massive than the electron, we expect
the motion of the nucleus to be slight compared with the electrons’ motions.

In 1911, Rutherford proposed his planetary model of the atom in which the elec-
trons revolved about the nucleus in various orbits, just as the planets revolve about the
sun. However, there is a fundamental difficulty with this model. According to classical
electromagnetic theory, an accelerated charged particle radiates energy in the form of
electromagnetic (light) waves. An electron circling the nucleus at constant speed is
being accelerated, since the direction of its velocity vector is continually changing.
Hence the electrons in the Rutherford model should continually lose energy by rad-
iation and therefore would spiral toward the nucleus. Thus, according to classical
(nineteenth-century) physics, the Rutherford atom is unstable and would collapse.

A possible way out of this difficulty was proposed by Niels Bohr in 1913, when he
applied the concept of quantization of energy to the hydrogen atom. Bohr assumed
that the energy of the electron in a hydrogen atom was quantized, with the electron
constrained to move only on one of a number of allowed circles. When an electron
makes a transition from one Bohr orbit to another, a photon of light whose frequency
v satisfies

Epper— Elgwer = hv (1.4)*

upper

is absorbed or emitted, where E ., and E,,,,, are the energies of the upper and lower
states (conservation of energy). With the assumption that an electron making a transi-
tion from a free (ionized) state to one of the bound orbits emits a photon whose fre-
quency is an integral multiple of one-half the classical frequency of revolution of the
electron in the bound orbit, Bohr used classical mechanics to derive a formula for the
hydrogen-atom energy levels. Using (1.4), he obtained agreement with the observed
hydrogen spectrum. However, attempts to fit the helium spectrum using the Bohr the-
ory failed. Moreover, the theory could not account for chemical bonds in molecules.
The basic difficulty in the Bohr model arises from the use of classical mechanics
to describe the electronic motions in atoms. The evidence of atomic spectra, which
show discrete frequencies, indicates that only certain energies of motion are allowed;
the electronic energy is quantized. However, classical mechanics allows a continuous
range of energies. Quantization does occur in wave motion; for example, the funda-
mental and overtone frequencies of a violin string. Hence Louis de Broglie suggested
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in 1923 that the motion of electrons might have a wave aspect; that an electron of mass
m and speed v would have a wavelength

A=k (L5)

mv p

associated with it, where p is the linear momentum. De Broglie arrived at Eq. (1.5) by
reasoning in analogy with photons. The energy of any particle (including a photon) can
be expressed, according to Einstein’s special theory of relativity, as E = mc? where c is
the speed of light and m is the particle’s relativistic mass (not its rest mass). Using
Ephoton = hv, we get mc? = hv = hc/A and A = h/mc = h/p for a photon traveling at
speed c¢. Equation (1.5) is the corresponding equation for an electron.

In 1927, Davisson and Germer experimentally confirmed de Broglie’s hypothesis
by reflecting electrons from metals and observing diffraction effects. In 1932, Stern
observed the same effects with helium atoms and hydrogen molecules, thus verifying
that the wave effects are not peculiar to electrons, but result from some general law of
motion for microscopic particles.

Thus electrons behave in some respects like particles and in other respects like
waves. We are faced with the apparently contradictory “wave-particle duality” of mat-
ter (and of light). How can an electron be both a particle, which is a localized entity,
and a wave, which is nonlocalized? The answer is that an electron is neither a wave nor
a particle, but something else. An accurate pictorial description of an electron’s behav-
ior is impossible using the wave or particle concept of classical physics. The concepts of
classical physics have been developed from experience in the macroscopic world and
do not properly describe the microscopic world. Evolution has shaped the human
brain to allow it to understand and deal effectively with macroscopic phenomena. The
human nervous system was not developed to deal with phenomena at the atomic and
molecular level, so it is not surprising if we cannot fully understand such phenomena.

Although both photons and electrons show an apparent duality, they are not the
same kinds of entities. Photons always travel at speed ¢ and have zero rest mass;
electrons always have v < ¢ and a nonzero rest mass. Photons must always be treated
relativistically, but electrons whose speed is much less than ¢ can be treated nonrela-
tivistically.

1.3 THE UNCERTAINTY PRINCIPLE

Let us consider what effect the wave-particle duality has on attempts to measure
simultaneously the x coordinate and the x component of linear momentum of a micro-
scopic particle. We start with a beam of particles with momentum p, traveling in the y
direction, and we let the beam fall on a narrow slit. Behind this slit is a photographic
plate. See Fig. 1.1.

Particles that pass through the slit of width w have an uncertainty w in their x
coordinate at the time of going through the slit. Calling this spread in x values Ax, we
have Ax = w.

Since microscopic particles have wave properties, they are diffracted by the slit
producing (as would a light beam) a diffraction pattern on the plate. The height of the
graph in Fig. 1.1 is a measure of the number of particles reaching a given point. The dif-



