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PREFACE

As A brief characterization of its content, this ninth volume in the Course of
Theoretical Physics may be said to deal with the quantum theory of the con-
densed state of matter. It opens with a detailed exposition of the theory of
Bose and Fermi quantum liquids. This theory, set up by L. D. Landau follow-
ing the experimental discoveries by P. L. Kapitza, is now an independent
branch of theoretical physics. Its importance is in fact measured not so much by
even the remarkable phenomena that occur in the liquid isotopes of helium as by
the fact that the concepts of a quantum liquid and its spectrum are essentially
the foundation for the quantum description of macroscopic bodies.

For example, a thorough understanding of the properties of metals involves
treating the electrons in them as a Fermi liquid. The properties of the electron
liquid are, however, complicated by the presence of the crystal lattice, and a
study of the simpler case of a homogeneous isotropic liquid is a necessary pre-
liminary step in the construction of the theory. Similarly, superconductivity in
metals, which may be regarded as superfluidity of the electron liquid, is difficult
to understand clearly without a previous knowledge of the simpler theory
of superfluidity in a Bose liquid.

The Green’s function approach is an indispensable part of the mathematical
formalism of modern statistical physics. This is not only because of the con-
venience of calculation of Green’s functions by the diagram technique, but
particularly because the Green’s functions directly determine the spectrum of
elementary excitations in the body, and therefore constitute the langnage that
affords the most natural description of the properties of these excitations, In
the present volume, therefore, considerable attention is paid to methodologi-
cal problems in the theory of Green’s functions of macroscopic bodies.
Although the basic ideas of the method are the same for all systems, the specific
form of the diagram technique is different in different cases. It is consequently
natural to develop these methods for the isotropic quantum liquids, where the
essence of the precedure is seen in its purest form, without the complications
arising from spatial inhomogeneity, the presence of more than one kind of
particle, and so on.

For similar reasons, the microscopic theory of superconductivity is described
with the simple model of an isotropic Fermi gas with weak interaction, dis-
regarding the complications due to the presence of the crystal lattice and the
Coulomb interaction.

In respect of the chapters dealing with electrons in the crystal lattice and

ix



X Prefuce

with the theory of magnetism, we must again stress that this book is part of a
course of theoretical physics and in no way attempts to be a textbook of solid
state theory. Accordingly, only the most general topics are discussed here, and
no reference 1s made to problems that involve the use of specific experimental
results, nor to methods of calculation that have no evident theoretical basis.
Moreover, this volume does not include the transport properties of solids,
with which we intend to deal in the next and final volume of the Course.

Finally, this book also discusses the theory of electromagnetic fluctuations
in material media and the theory of hydrodynamic fluctuations. The former was
previously included in Volume &, Electrodynamics of Continuous Media. lts
transfer to the present volume is a consequence of the need to make use of
Green’s functions, whereby the entire theory can be simplified and made more
convenient for application. It is also more reasonable to treat electromagnetic
and hydrodynamic fluctuations in the same volume. -

This is Volume 9 of the Course of Theoretical Physics (Part 1 of Statis-
tical Physics being Volume 5). The logic of the arrangement is that the
topics dealt with here are closely akin also to those in fluid mechanics
(Volume 6) and macroscopic electrodynamics (Volume 8).

L. D. Landau is not among those who have actually written this book.
But the reader will quickly observe how often his name occurs in it: a consid-
erable part of the results given here are due to him, alone or with his pupils
and colleagues. Our many years’ association with him enables us to hope that
we have accurately reflected his views on these subjects—while at the same
time, of course, having regard to developments in the fifteen years since his
work was so tragically terminated.

We should like to express here our thanks to A. F. Andreev, I. E. Dzyalo-
shinskii and I. M. Lifshitz for many discussions of topics in this book. We
have had great benefit from the well-known book Quantum Field Theoretical
Methods in Statistical Physics (Pergamon, Oxford, 1965) by A. A. Abrikosov,
L. P. Gor’kov and L. E. Dzyaloshinskii, one of the first books in the literature
of physics to deal with the new methods of statistical physics. Lastly, we are
grateful to L. P. Gor’kov and Yu. L. Klimontovich for reading the book in
manuscript and making a number of comments.

April 1977 E. M. Lirstitz

L. P, PITAEVSKI1



NOTATION

VECTOR suffixes are denoted by Latin letters i, k, ... Spin indices are denoted by
Greek lctters «, B, ... Summation is implied over all repeated indices.

“4.vectors” (see the footnote to equation (13.8)) are denoted by capital letters
X, P, ...

Volume element dV or d®x. -

Limit on tending to zero from above or below +0 or — 0.

Operators are denoted by a circumflex.

Hamiltonian ﬁ, H = H—uN.

Perturbation operator V.

y operators in the Schrodinger representation %, ¥™; in the Heisenberg represen-
tation ¥, ¥+ in the Matsubara representaion ¥M, P,

Green'’s functions G, D.

Temperature Green's functions &. D.

Thermodynamic quantities are denoted as in Part 1, for example T temperature,
¥ volume, P pressure, 4 chemical potential.

Magnetic field H; magnetic induction B; external magnetic fic'd 9.

References to earlier volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).

QM = Vol. 3 (Quantum Mechanics, third English edition, 1977).

QF = Vol. 4 (Quantum Electrodynamics, second English edition, 1982),

Part 1 = Vol. 5 (Statisncal Physics, Part 1, third English edition, 1980).

FM = Vol. 6 (Fluid Mechanics, first English edition, 1959).

ECM = Vol. 8 (Electrodynamics of Continuous Media, second English edition,
1984).

All are published by Pergamon Press.
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CHAPTER 1

THE NORMAL FERMI LIQUID

§ 1. Elementary excitations in a quantum Fermi liquid

AT TEMPERATURES 50 low that the de Broglie wavelength corresponding to
the thermal motion of the atoms in a liquid becomes comparable with the
distances between the atoms, the macroscopic properties of the liquid are de-
termined by quantum effects. The theory of such quantum liquids is of consid-
crable fundamental interest, although there exist in Nature only two such
that are literally liquids, the liquid isotopes of helium He? and He! at tempera-
tures ~ 1-2°K. All other substances solidify well before quantum effects
become important in them. In this connection, it may be recalled that according
to classical mechanics all bodies should be solid at absolute zero (see Part 1,
§64). Helium, however, because of the peculiarly weak interaction between
its atoms, remains liquid down to temperatures where quantum phenomena
come into effect, whereupon it need not solidify.

The calculation of the thermodynamic quantities for a macroscopic body
requires a knowledge of its energy level spectrum. In a system of strongly
interacting particles such as a quantum liquid, we can refer, of course, only to
levels that correspond to quantum-mechanical stationary states of the whole
liquid, not to states of the individual atoms. In calculating the partition func-
tion at sufficiently low temperatures, we are to take account only of the weakly
excited energy levels of the liquid, lying fairly close to the ground state.

The following point is of fundamental importance for the whole theory.
Any weakly excited state of a macroscopic bedy may be regarded, in quantum
mechanics, as an assembly of separate elementary excitations. These behave
like quasi-particles moving in the volume occupied by the body and possessing
definite energies & and momenta p. The form of the function &(p), the disper-
sion relation for the elementary excitations, is an important characteristic of
the energy spectrum of the body. It must again be emphasized that the con-
cept of elementary excitations arises as a means of quantum-mechanical
description of the collective motion of the atoms in a body, and the quasi-
particles cannot be identified with the individual atoms or molecules.

There arc various types of energy spectrum that can in principle occur in
quantum liquids. There will be completely different macroscopic properties
also, depending on the type of spectrum. We shall begin by considering a liquid
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2 The Normal Fermi Liquid

with what may be called a Fermi spectrum. The theory of such a Fermi liquid
is due to L. D. Landau (1956-1958); he derived the results given in §§1-4."
The energy spectrum of a Fermi quantum liquid has a structure which is to
some extent similar to that of an ideal Fermi gas (of particles withspin ).
The ground state of the latter corresponds to the occupation by particles of all
the states within the Fermi sphere, a sphere in momentum space whose radius
pris related to the gas density N/ ¥ (number of particles per unit volume) by

NV = 2.4xp}/3(2ah)p
= pi/3n%h3; (.1

sec Part 1, §57. The excited states of the gas occur when the particles pass from
states of the occupied sphere to some states with p = pg.

In a liquid, of course, there are no quantum states for individual particles.
but to construct the spectrum of a Fermi liquid we start from the assumption
that the classification of energy levels remains unchanged when the interaction
between the atoms is gradually “switched on”, i.e. as we go from the gas to the
liquid. In this classification the role of the gas particles is taken by the elemen-
tary excitations (quasi-particles), whose number is equal to the number of
atoms and which obey Fermi statistics.

It is evident that such a spectrum can occur only for a liquid of particles
with half-integral spin: the state of a system of bosons (particles with integral
spin) cannot be described in terms of quasi-particles obeying Fermi statistics.
At the same time it must be emphasized that a spectrum of this type cannot be
a universal property of all such liquids. The type of spectrum depends also.on
the specific nature of the interaction between atoms. This is clear from the
following simple consideration: if the interaction is such that it causes the
atoms to tend to associate in pairs, then in the limit we obtain a molecular
liquid consisting of particles (molecules) with integral spin, for which the
spectrum under consideration is certainly impossible.

Each of the quasi-particles has a definite momentum p (we shall return later
to the question of the validity of this assertion). Let n(p) be the momentum
distribution function of the quasi-particles, normalized by the condition

[ndv= NV, dv=dplQuhy;

this condition will later be made more precise. The classification principle
mentioned above consists in supposing that, if this function is specified, the
energy E of the liquid is uniquely determined and that the ground state cor-
responds to a distribution function in which all states are occupied within the
Fermi sphere, whose radius pj is related to the density of the liquid by the
same formula (1.1) as for an ideal gas.

t To anticipate, we may mention here for the avoidance of misunderstanding that we are
referring to a non-superfluid (rormal) Fermi liquid, such as is the liquid isotope He?, with
the reservation made in the third footnote to §54.
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o

It is important to emphasize that the total energy E of the liquid is not simply
the sum of the encrgies ¢ of the quasi-particles. In other words, E is a functionat
of the distribution function that does not reduce to the integral J' ne dv (as it
does for an ideal gas, where the quasi-particles are the same as the actual
patticles and do not interact). Since the primary concept is E, the question
arises how the energy of the quasi-particles is to be defined, with allowance for
their interaction. '

For this purpose, let us consider the change of E due to an infinitesimal
change in the distribution function. It can manifestly be defined as the integral
of an expression linear in the variation 6, i.e. it has the form

SEIV = J. e(p)dn dr.

The quantity e is the functional derivative of the energy E with respect to the
distribution function. It corresponds to the change in the energy of the system
when a single quasi-particle with momentum p is added. This quantity plays
the role of the Hamiltonian function of a quasi-particle in the field of the other
particles. It is also a functional of the distribution function, i.e. the form of the
function &(p) depends on the distribution of all the particles in the liquid.

In this connection it may be noted that an elementary excitation in the type
of spectrum considered may in a certain sense be treated like an atom in the
self-consistent field of the other atoms. This self-consistency is, of course, not
to be understood in the sense usual in quantum mechanics. Here its nature is
more profound; in the Hamiltonian of the atom, not only is allowance made for
the effect of the surrounding particles on the potential energy, but the depend-
ence of the kinetic-energy operator on the momentum operator is also modified.

Hitherto we have ignored the possible spin of the quasi-particles. Since spin
is a quantum-mechanical quantity, it cannot be treated classically, and we must
therefore regard the distribution function as a statistical matrix with respect
to the spin. The energy ¢ of an elementary excitation is in general not only a
function of the momentum but also an operator with respect to the spin
variables, which may be expressed in terms of the quasi-particle spin operator
£. In a homogeneous isotropic liquid (not in a magnetic field and not ferromag-
netic) the operator § can appear in the scalar function ¢ only in the form of the
scalars 8% and (8.p)?; the first power of the product 8.p is inadmissible, since the
spin vector is an axial vector and this product is therefore a pseudoscalar. The
square §* = 5(s+1), and for spin s = -} the scalar (8.p)2 = % p? also reduces to
a constant independent of §. Thus in this case the energy of a quasi-particle
is independent of the spin operator, and all the energy levels of the quasi-
particles are doubly degenerate.

The statement that a quasi-particle has spin essentially expresses the fact
that this degeneracy exists. In this sense we can say that the spin of the quasi-
particles in a spectrum of the type considered is always +, whatever the spin
of the actual particles in the liquid. For with any spin s other than  the terms




4 The Normal Fermi Liquid

of the form (§.p)* would give a splitting of the (254 1)-fold degenerate levels
into 1(25+1) doubly degenerate levels. In other words, —‘2—(7.v+ 1) different
branches of the function &(p) would appear, each corresponding to “quasi-
particles with spin 3.

As already mentioned, when the spin of the quasi-particles is taken into
account the distribution function becomes a matrix or an operator 7(p) with
respect to the spin variables. This operator may be explicitly written as an
Hermitian statistical matrix #,4(p), where « and § are spin matrix indices taking
the two values + 4. The diagonal matrix elements determine the numbers of
quasi-particles in particular spin states. The normalization condition for the
quasi-particle distribution function must therefore now be written

tr A dv = J e dv = NIV, dv = &p|(2h), (1.2)

where tr denotes the trace of the matrix with respect to the spin indices.!
The quasi-particle energy & is in general also an operator (a matrix with
respect to the spin variables). It must be defined by

SEIV =tr {2 éfidr = [ e, Ong, dr. (1.3)

If there is no spin dependence of the distribution function and the energy,
so that n,, and e, reduce to unit matrices:

Nap = NOap,  Eap = €04, (1.4)

then the taking of the trace in (1.2) and (1.3) amounts to simply multiplying
by 2:

2(ndv =NV, OEIV =2[ebndr. (1.3)

It is easy to see that in statistical equilibrium the quasi-particle distribution
function is an ordinary Fermi distribution, the energy being represented by tne
quantity £ defined in (1.3). For, because the energy levels of the liquid and of

the ideal Fermi gas are classified in the same manner, the entropy § of the
liquid is determined by a similar combinatorial expression

S|V = —tr | {ilogii+(1—#)log (1—#)} dv (1.6)

to that for a gas (Part 1, §55). Varying this expression with the additional con-
ditions of constant total number of particles and constant total energy,

ONJV =1tr [ dfidt = 0, OE[V = tr [ §6rdr = 0,
we obtain the required distribution: ‘
A= [eG=wiT+1]7, (1.7}

where p is the chemical potential of the liquid.

+ Here and throughout, summation is as usual implied over repeated indices.



§1 Elementary Excitations in a Quantum Fermi Liquid : 5

When the quasi-particle energy is independent of the spin, formula (1.7)
signifies a similar relation between n and e:

n = [et=nT+1]71, (1.8)

At T = 0, the chemical potential is equal to the limiting energy on the surface
of the Fermi sphere:
[tlr=0 = er = &(pr). (1.9

It must be emphasized that, despite the formal analogy between the expression
(1.8) and the ordinary Fermi distribution, it is not identical with the latter:
since ¢ itself is a functional of n, formula (1.8) is strictly speaking a complicated
implicit expression for ».

Let us now return to the assumption that a definite momentum can be
assigned to each quasi-particle. The condition for this assumption to be valid
1s that the uncertainty in the momentum (due to the finite mean free path of the
quasi-particle) should be small not only in comparison with the momentum
iself but also in comparison with the width 4p of the “transitional zone” of
the distribution, over which it differs appreciably from a step function:

Ap)=6(p) =1 for p< p;,}

(1.10
=0 for p = pr. )

It is easy to see that this condition is satisfied if the distribution x(p) differs
from (1.10) only in a small region near the surface of the Fermi sphere. For,
oy the Pauli principle, only quasi-particles in the transitional zone of the distri-
butien can undergo mutual scattering, and as a result of this scattering they
niust enter free states in that zone. Hence the collision probability is propor-
tional to the square of the width of the zone. Accordin gly, the uncertainty in the
energy and hence that in the momentum of the quasi-particle are both propor-
tional to (1p)*. It is therefore clear that, when Ap is sufficiently small, the un-
certainty in the momentum will be small only not in comparison with pp but
also with .1p.

Thus the method described is valid only for excited states of the liquid which
are described by a quasi-particle distribution function differing from a step
function In just a narrow region near the Fermi surface. In particular, for
thermodynamic equilibrium distributions only sufficiently low temperatures are
permissible, The (energy) width of the transitional zone of the equilibrium
distribution is of the order of 7. The quantum uncertainty in the energy of a
quasi-particle, due to collisions, is of the order of #i/z, where 7 is the mean free
time of the quasi-particle. The condition for the theory to be applicable is
therefore

At < T, (L.11)

¥ For future reference, it may be noted that the derivative &'(p) = - 8(p— py), since both
sides give unity on integration over any range of p that includes the point p = Pr.



6 . The Normal Fermi Liquid

According to the preceding discussion, the time 7 is inversely proportional to
the squared width of the transitional zone:-

toc T2

so that (1.11) is certainly satisfied as T — 0. For a liquid in which the inter-
action between particles is not weak, all the energy parameters are of the same
order as the limiting energy &g; in this sense, the condition (1.11) is equivalent
to T < | &gt k

For almost step-function distributions (i.e. those close to the distribution
for T = 0), as a first approximation we can replace the functional e by its value
calculated with n(p) = 6(p). Then ¢ becomes a definite function of the magni-
tude of the momentum, and (1.7) becomes the ordinary Fermi distribution.

Near the surface of the Fermi sphere, where alone the function &(p) has a

direct physical significance, it can then be expanded in powers of the differ-
ence p—pr. We have

e—ep = Op(p—PprF), (1.12)
where

Ve = [06/0p], - 5, (1.13)

is the “velocity” of the quasi-particles on the Fermi surface. In anideal Fermi
gas, where the quasi-particles are identical with the actual particles, we have
e = p*2m, and so vy = pg/m. By analogy we can define for a Fermi liquid
the quantity

m* = prfvUf, (114)

called the effective mass of the quasi-particle; it is positive (see the end of
§2).

In terms of the quantities thus defined, the condition for the theory to be
applicable may be written T < vgpy, and only quasi-particles with momenta
p such that ' p—pg] < pe have any real meaning. This important fact, in
particular, makes the relation (1.1) between pg and the density of the liquid
non-trivial, since its intuitive derivation (for a Fermi gas) is based on the
concept of particles in states occupying the whole Fermi sphere, not just the
neighbourhood of its surface.?

The effective mass determines, in particular, the entropy S and the specific
heat C of the liquid at low temperatures. These are given by the same formula
as for an ideal gas (Part 1,§58), in which we need only replace the particle mass
m by the effective mass m*:

S =C=WyT, y=mpel3ht = (Ln)S(m* [ (NjV)¥3;  (1.15)

+ For liquid He?, however, the range of quantitative applicability of the theory is shown
by experiment to be in fact limited to 7 5 0.1 °K (whereas | epl & 2.5 °K). _

% The proof of (1.1) involves the use of more complicated mathematical methods. and is
given in §20 below.



§1 Elementary Excitations in a Quantum Fermi Liquid 7

because of the linear dependence on 7, S and C are the same. This follows
because the expression (1.6) for the entropy in terms of the distribution func-
tion is the same for a liquid and for a gas, and in the calculation of this integral
only the range of momenta near p, is important, in which the quasi-particle
distribution function in the liquid and the particle distribution function in the
gas are given by the same expression (1.8)."

Before the theory is further developed, the following remark should be made.
Although this method of defining the quasi-particles in a Fermi liquid by
exact analogy with the particles in a gas is the most convenient in systematically
deriving the theory, the corresponding physical picture has the disadvantage of
involving the unobservable filled Fermi sphere of quasi-particles. This could be
eliminated by a formulation in which the elementary excitations occur only
when T > 0. In such a picture, the elementary excitations are represented by
quasi-particles outside the Fermi sphere and “holes” within it; the former are .
to be assigned, in the approximation corresponding to (1.12), the energy
¢ = vp(p—pr), and the latter the energy ¢ = v (pp—p). The statistical distri-
bution of each is given by the Fermi distribution formula with zero chemical
potential (in accordance with the fact that the number of elementary excitations
is here not constant, but is itself determined by the temperature)*

n=[edT+1]L (1.16)

The elementary excitations in this picture appear or disappear only in pairs,
and so the total numbers of excitations with p > p. and p < pr are always
the same.

With this definition of the elementary excitations, their energy is certainly
positive, being the excess of the energy of the excited level over that of the
ground level of the system. The energy of the quasi-particles defined by (1.3)
may be either positive or negative.

Moreover, for a liquid at zero temperature and zero pressure, the quantity
ep = p Is certainly negative, and the values of ¢ close to &, are therefore
negative also. This is clear, since, when T = 0 and P = 0, —pu is a positive
quantity, the limiting value of the heat of evaporation of the liquid per particle.

.

t For liquid He® at zero pressure, Prffi = 0.8X10%cm™L; m* = 3.1 m (He%); p, is found
from the density of the liquid, and m* from its specific heat.

$ It will be recalled (cf. Part 1, §63) that under such conditions the number of quasi-parti-
cles N, is determined by the condition for thermodynamic equilibrium: the free energy Fis a
minimtfm as a function of N, for given temperature and volume: (OF/dN,,) 7, ¢y = 0. This
derivative is, however, just the “chemical potential of the quasi-particles”; it should not be

confus'ed with the chemical potential 4 of the liquid, which is determined by the derivative
of Fwith respect to the number of actual particles N.



