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Preface

Let G be a finite group and k a field. The set A = Map (G, k) of all
functions defined on G with values in k becomes a k-algebra when we
define the scalar product and the sum and product of functions by

(af)(x) = af (x), (f +9)(x) = f(x) +g(x),
(fOx)=f(x)g(x), f,geA, aek, xeG.

In general, a k-algebra A can be characterized as a k-linear space A
together with two k-linear maps

H:AR A=A, nk-oA,

which satisfy axioms corresponding to the associative law and the
unitary property respectively. If we identify A®,A with Map
(G x G, k) where A =Map (G, k), and if the operations of G are
employed in defining the k-linear maps

A:A-AR A, e:A—k

respectively by Af(x®y) = f(xy), ef = f(e) for x, yeG and where
e is the identify element of G, then A and & become homomorphisms
of k-algebras having properties which are dual to x and n respec-
tively. In general, a k-linear space A with k-linear maps u, 1, A, ¢
defined as above is called a k-bialgebra. Furthermore, we can define a

k-linear endomorphism of A = Map (G, k) '

S:A-A, (Sf)x)=f(x""), feA, xeG
such that the equalities
(1 ®S)A=puS @NA=1n-¢

hold. A k-bialgebra on which we can define a k-linear map § as above
is called a k-Hopf algebra. Thus, a k-Hopf algebra is an algebraic
system which simultaneously admits structures of a k-algebra as well
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as its dual, where these two structures are related by a certain specific
law. For a finite group G, its group ring kG over a field k is the dual
space of the k-linear space A = Map (G, k) where its k-algebra
structure is given by the dual k-linear maps of A and &. Moreover, kG
admits a k-Hopf algebra structure when we take the dual k-linear
maps of yu, n, and S. In other words, kG is the dual k-Hopf algebra of
Map (G, k).

If, for instance, we replace the finite group G in the above argument
by a topological group and k by the field of real numbers or the field of
complex numbers, or if we take G to be an algebraic group over an
algebraically closed field k and A is replaced by the k-algebra of all
continuous representative functions or of all regular functions over G,
then A turns out to be a k-Hopf algebra in exactly the same manner.
These algebraic systems play an important role when studying the
structure of G. Similarly, a k-Hopf algebra structure can be defined
naturally on the universal enveloping algebra of a k-Lie algebra.
The universal enveloping algebra of the Lie algebra of a
semi-simple algebraic group turns out to be (in a sense) the dual of the
Hopf algebra defined above. These constitute some of the most
natural examples of Hopf algebras. The general structure of such
algebraic systems has recently become a focus of interest in con-
junction with its applications to the theory of algebraic groups or the
Galois theory of purely inseparable extensions, and a great deal of
research is currently being conducted in this area.

It has only been since the late 1960s that Hopf algebras, as algebraic
systems, became objects of study from an algebraic standpoint.
However, beginning with the research on representation theory
through the use of the representative rings of Lie groups by
Hochschild—Mostow (Ann. of Math. 66 (1957), 495-542, 68 (1958),
295-313) and in subsequent studies (cf. references [4], [7], [8] for
Chapter 3), Hopf algebras have been taken up extensively as algebraic
systems and also used in applications. On the other hand, in algebraic
topology, the concept of graded Hopf algebras was derived at an even
earlier date from an axiomatization of the works of H. Hopf relating
to topological properties of Lie groups (cf. Ann. of Math. 42 (1941),
22-52). Hence the name, ‘Hopf algebra’. For instance, if G is a
connected Lie group, the cohomology group H*(G) or the homology
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group H ,(G) of G with coefficients in a field k has a multiplication or a
dual multiplication induced by the diagonal map d:G—G x G
(d(x) =(x, x), xeG) and is moreover a commutative k-algebra. In
addition, the map m : G x G — G defined via the Lie group multipli-
cation induces the maps

A:H*(G)->H*(G)®@H*(G) or A:H,(G)—H,(G)®H,(G)

which respectively make H*(G) or H ,(G) a k-Hopf algebra. These are
graded Hopf algebras and such structures can be defined also for
H-spaces, and have been generalized by A. Borel, J. Leary, and others
(cf. A. Borel: Ann. of Math. 57 (1953), 115-207). For details on the
algebraic properties of Hopf algebras, the reader is referred to
J. Milnor-J. C. Moore: Ann of Math. 81 (1965), 211-64.

This book has as its main objective algebraic applications of (non-
graded) Hopf algebras, and an attempt has been made to acquaint
the reader with the elementary properties of Hopf algebras with a
minimal amount of preliminary knowledge. There is an excellent
work on the subject, Hopf algebras by Sweedler (Benjamin, 1969), to
which this book owes a great deal. But here the central theme will
revolve around applications of Hopf algebras to the representative
rings of topological groups and to algebraic groups. Some recent
developments on the subject have also been incorporated.

This book consists of five chapters and an appendix. Chapter 1 is
preparation for the central subject of the book and deals with some
basic properties of modules and algebras which become necessary in
the sequel. Some simple properties of groups, fields, and topological
spaces have been used without proofs. With regard to the solutions to
some of the exercises and in the treatment of finitely generated
commutative algebras, where I have either omitted or condensed a
number of the proofs of well-known theorems, the reader is asked to
refer to other texts. In Chapter 2, coalgebras, bialgebras, and Hopf
algebras are defined, and their fundamental properties are outlined.
Chapter 3 takes up the structure theorem of bimodules and proper-
ties of Hopf algebras similar to those of the representative rings of
topological groups. The proofs of the existence and uniqueness of the
integral of commutative Hopf algebras are due to J. B. Sullivan. In
Chapter 4, fundamental properties of affine algebraic groups are
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proven through an application of the theory of Hopf algebras. The
construction of factor groups, the proof of the decomposition
theorem of solvable groups, and the proofs of theorems related to
completely reducible groups are respectively due to Mitsuhiro
Takeuchi, J. B. Sullivan, and M. E. Sweedler. Although properties
pertaining to the representation of affine algebraic groups can be
described satisfactorily by such an approach, there are drawbacks as
well as merits in pursuing a general theory in this context. For
instance, it may distort the overall view of the development of the
subject matter. It should be interesting, for instance, to attempt an
exposition of the theory of Borel subgroups, which is an important
topicin the theory of linear algebraic groups, not touched upon in this
book. Chapter 5 contains a brief glance at the Galois theory of purely
inseparable extensions. Although there are numerous texts dealing
with Galois theory, here I have presented a treatment of the subject by
D. Winter. The appendix contains a sketch of the theory of categories,
where notions such as categories, functors and, for a category ¢,
€-groups and ¥-cogroups, which are used throughout this book,
are defined.

Since commutative Hopf algebras are precisely the commutative
algebras which represent affine group schemes, applications of Hopf
algebras also naturally develop along these lines. The reader will do
well to refer to other texts on this matter.

The writing of this book was suggested to me by Professor
Nagayoshi Iwahori of the Faculty of Science of the University of
Tokyo, to whom I would like to express my most sincere gratitude. I
am also very grateful to Professors Yukio Doi of Fukui University
and Mitsuhiro Takeuchi of the University of Tsukuba for many
valuable words of advice which they have given me in preparing the
manuscript.

Eiichi Abe
Tokyo, Japan



Notations

Sets
aeM or M>3a a is an element of the set M
McNor NoM ae M implies ae N, namely, M
is contained in N
MUN; | M, the union of M and N; the
Aed union of M, (1€eA)
MnN; N M, the intersection of M and N ; the
dea intersection of M, (A€ A)
@ the empty set
2 the set of all integers
N the set of all natural numbers
Maps
f:M—>N a map from the set M to the set
N
xXby the ‘image f(x) of xe M under

the map fis yeN

When f(M)= N, f is called a surjection.

If x, x'e M, x # x’ implies f(x)# f(x’), then f is called an injection.
For M’c M, we denote the restriction of f to M’ by fl..

If f:M —N,g:N— P are two maps, the composition of f and g is
written g o f; x> g(f(x)).

xi
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Logical symbols
A=B

A<B
VxeM

Noztations

If proposition A holds, then
proposition B holds
A=Band B=>A

for any element x of M
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1
Modules and algebras

1 Modules

This section deals with direct sums, direct products, tensor products,
and the projective and inductive limits of modules. Proofs of some
fundamental properties of such constructions have been omitted and
left as exercises. For these, the reader is asked to refer to texts such as

[3] or [5].

1.1 Modules

A set A with two operations — addition and multiplication — which
satisfies properties (1) to (3) below is said to be a ring with identity.
Since this book deals exclusively with this type of ring, we will call
them simply rings.

(1) The addition + makes A4 an abelian group.

(2) The multiplication - makes 4 a semigroup with identity

element 1,
(3) The distributive law holds. Namely, for q, b, ce A, we have

a(b+c)=a'b+a-c, (a+b)-c=ac+b-c.

A ring with a commutative multiplication is called a commutative
ring. Henceforth, the product a- b of a, be A will be written ab. Let A
and B be rings. If a map u: 4 — B satisfies the properties

ua+ b)=u(a)+u(b), u(@b)=u(@u(b), u(l)=1, a, be4,

then u is said to be a ring morphism from 4 to B. The category of rings
(resp. commutative rings) will be denoted Alg (resp. M) and the set of
all ring morphisms from 4 to B will be written Alg (4, B) (resp.
M(A, B) when A4, B are commutative rings).

For aring A and an abelian group M, suppose we are given a map
©:Ax M- M (resp.y : M x A— M). Wesignify the group operation
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on M by addition +, and for ac 4, xe M, we write ¢(a,x) =ax
(resp. Y(x, @) = xa). When conditions (1) to (4) (resp. (1) to (4')) below
hold for a, be A and x, ye M, M is called a left A-module (resp. right
A-module), and ¢ (tesp. ) is said to be the structure map of the left
{resp. right) 4A-module.

(1) a(x+y)=ax+ay, resp. (1) (x+ yla=xa+ ya,

(2) (a+ b)x =ax+ bx, (2) x(a+ b)=xa+ xb,
(3) (ab)x = a(bx), (3) x(ab) =(xa)b,
4 Ix=x. @) xl=x.

Moreover, given rings A4, B, if M is both a left A-module and a right
B-module satisfying the condition

(ax)b=a(xb), acA, beB, xeM,

then M is called a two-sided (A4, B)-module. A two-sided (4, A)-module
is called simply a two-sided A-module. If 4 is a commutative ring, a left
A-module can be regarded as a right A-module, and is often simply
called an A-module. For instance, an abelian group is a Z-module.
In the case of a ring 4, when the map defining the multiplication
p:Ax A— Agivenby u(a, b) = ab, a, be A is taken to be the structure
map, A becomes a left A-module as well as a right A-module.
Moreover, A is a two-sided A-module. For a field k, a k-module is also
called a k-linear space or a k-vector space.
Let M, N be left A-modules. A map f : M — N such that

flax +by)=af (x)+ bf (y), a, beA, x,yeM,

is called a left A-module morphism from M to N. If k is a field,
a k-module morphism is sometimes called a k-linear map. The
category of left A-modules is denoted ,Mod, and the set of all left
A-module morphisms from M to N is denoted Mod (M, N).
Similarly, given right A-modules M, N, we can define right A-module
morphisms and the set of all right A-module morphisms from M to N,
which we write Mod (M, N). In particular, Mod ,(M, M) is written
End ,(M).If f e ,Mod (M, N)or f eMod, (M, N)is bijective, f is said
to be an isomorphism. The identity map from M to M is an
isomorphism, denoted by 1,, or simply by 1.
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Now let f, ge ;,Mod(M, N). Defining

(f +9)x)= f(x) 1t g(x), xeM,

f + g becomes a left A-module morphism from M to N. Under this
operation, ,Mod (M, N) becomes an abelian group. If N is also a
two-sided A-module, then by defining

(fa)(x)= f(x)a, acA, xeM,

we have fae ;Mod(M, N), and hence ,Mod(M, N) becomes a right
A-module. When in particular N = A, N is a two-sided A-module, and
here, the right A-module Mod (M, A) is called the dual right
A-module of the left A-module M, which is denoted by M*. If 4 is
commutative, ,Mod (M, N) can be regarded as a left 4-module.

EXERCISE 1.1 Given a left 4A-module morphism f:M =N, f is
an isomorphism <> there exists a left A-module morphism g:N —+M
such that fog=1,and gof =1,,.

EXERCISE1.2 Let A be a commutative ring. Given left
A-modules M, M’, N, N' and left A-module morphisms
g:M—-M’', h:N—N’, the maps

g*: Mod (M’,N)— ,Mod (M, N), fi>feg,
hy : Mod (M, N)— ,Mod (M, N’), fihof,

are left A-module morphisms.

We observe that if a subgroup N of a left A-module M satisfies the
condition

xeN, aeA=axeN,

then N is a left 4-module. Such an N is called a left 4-submodule of M.
The factor group M/N also inherits a left A-module structure, and
M/N is called a factor left A-module. Regarding a ring A as a left
A-module (resp. right A-module; two-sided A-module), then an
A-submodule of 4 is simply a left ideal (resp. right ideal; two-sided
ideal).

Suppose now that the only left A-submodules of a left A-module M
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are {0} and M. In this situation, we call M a simple (or irreducible) left
A-module. Given a left A-module morphism f : M — N, the sets

Ker f ={xeM; f(x)=0},
Im f ={f(x)eN; xeM}

are left A-submodules of M and N respectively and are called the
kernel of f and the image of f. The smallest left A-submodule which
contains a subset S of a left A-module M is written (S and called the
left A-submodule generated by S.

Let A be a finite or infinite sequence of consecutive integers
and let M, (ieA) be left A-modules. Suppose we are given left
A-module morphisms f;: M, —» M, ., (i,i+ 1€A). When Ker f;, , =
Im £ (i, i + 1eA) for the sequence of left A-module morphisms

oMM oMo (L.1)

then (1.1) is said to be an exact sequence. For instance, when
0-MLN (resp. M LN50; 0 M IR N —0) is an exact sequence,
then f is injective (resp. surjective; bijective), and the converse also
holds.

EXERCISE 1.3 Let A be a commutative ring. For a sequence
M' LM & M -0 of A-module morphisms to be an exact sequence,
it is necessary and sufficient that, for any left A-module N, the
sequence

0— ,Mod (M”, N)& ,Mod (M, N) 55 ,Mod (M', N)

is exact. Furthermore, a sequence 0+ N’ LN & N" of left A-module
morphisms is exact if and only if, for any left A-module M, the
sequence

0 ,Mod (M, N} 5 ,Mod (M, N) & ,Mod (M, N"')

is exact (cf. Exercise 1.2).

1.2 Direct products and direct sums

Let {M,},. , be a family of left A-modules. Pick one element x, from
each M, and write the resulting set x = {x,},.4, calling x; the
A-component of x. Let P be the set of all x = {x,},., constructed in
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the above manner. For x = {x,},.,, ¥y= {y,},.,€P and aeA, we
define the operations

X+y={x;+ Valieas ax={ax,},.4,

which make P a left A-module. The map p , - P— M, which assigns to
X = {x,}1¢4€ P the A-component x, of x is a left A-module morphism,
and we call p, the canonical projection from P to M 1 The pair
(P, {P,}1¢ 4) consisting of P and the family of canonical projections
P (A€ A) is called the direct product of the family of left 4-modules
{M.}ic4, and is written P= [] M,. For A={1,2 ..., n}, this is

AeA
sometimes written M, x ... x M,. The direct product (P, {Pilica)

has the following property.
(P) Given a pair (N, {q,;},.,) consisting of an arbitrary left
A-module N and a family of left A-module morphisms
4, :N— M, (AeA), there exists a unique left A-module mor-
phism f:N — P which satisfies p,o f = g, (1€ A).
Hence the map which assigns to each fe «Mod (N, P). the
element {p,- [}, ,€ [] 4Mod (N, M,)is a bijection. Furthermore, if

AeA
A is a commutative ring, we have

«Mod (N, P)= [] ,Mod (N, M)

AeA
as left 4-modules. The element of ,Mod (N, P) which corresponds to
{filrea€ [1 «Mod (N, M) is written [] f, and is said to be the

A€A AeA
direct product of the A-module morphisms {f},.,. A left

A-module P with the above property is unique up to isomorphism,
and the direct product of the family of left 4-modules {M,},_, is
characterized by property (P).

Let S be the subset of P consisting of all those elements whose
A-components are zero except for a finite number of As. Then § turns
out to be a left A-submodule of P. When A is a finite set, we have
§=P. Given x,eM_, let i (x,) stand for the element of § whose
A-component is x, and all other components zero. Then the map
iy:M,—3S is a left A-module injection and is called the canonical
embedding of M, into S. Identifying i;(x,) with x, and regarding M,
asaleft 4-submodule of S, the element x = {x,},, , of S can be written



