B B 5 #H B8 9 K5
IS’Hfl:*E ﬂ?r '5}357K%’7\§|J?51%%%

e

L ™, W Nk~

B2 T Im
SE 7“35[*3-:

SOFTWARE ARCHITECT
BOOTCAMP

B Raphael Malveau
Thomas J. Mowbray

’ Education

=hE E Y H MM
L Higher Education Press

-

HE B «~ owrn < ow &
ESMEEERBFEERRRFIKEAS

XA 3Z i
Kl # iz

(RENRRD

SOFTWARE ARCHITECT BOOTCAMP

Raphael Malveau
Thomas J. Mowbray

Besavtmu

M. 01:2003-0686 £

Software Architect Bootcamp, First Edition
Raphael Malveau, Thomas J. Mowbray

A HHEMGH Pearson Education (BFAME HRER) BOLRHFE, THREEIBHE.

English reprint edition copyright ©2003 by PEARSON EDUCATION NORTH ASIA LIMITED and
HIGHER EDUCATION PRESS. (Software Architect Bootcamp from Prentice Hall, Inc.’s edition of the
Work)

Software Architect Bootcamp, 1e by Raphael Malveau, Thomas J. Mowbray, Copyright ©2001
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall,
Inc.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special
Administrative Regions of Hong Kong and Macau).

BBERKE (C1P) BB

KEBRFAIPLIIERE (£) D/RER (Malveau,R.),
(%) BEAEH (Mowbray, T.J.) . —REHR. —t
. E%aﬁ‘tﬂmi 2003.3
ISBN 7-04 -012661 -3

IL.%... 1.05..Q#... 0. .5%4-B%¥s
“HM-¥3x NV.TP3I s

o E AR A B 518 CIP B 5 (2003) % 012576 5

HAERIT WESHE LR F45 PP 010-64054588

o out EEHRBRYMELSS S, S PPl 800-810-0598
BEEURES 100009 =] ¥ http://www.hep.edu.cn
£ N 010-64014048 . pttp://www.hep.com.cn

2 W FeSEImRTR
BB RSHALEELERAF

F A 7871092 1/16 R Rk 200353 HZB1K
Ep ¥ 21.25 3] 2003 5 3 A% 1 KRENRY
F & 350000 E O 2600%

ABWARI. . RASRRAE, H25TEEBHER TR AR,
IBARFFR ARSI

|ll;

Hil

20 K, DUTENAEREEARYREGEERFREAMEREF. B,
EH. EEAXNMETLETEANEH. FENEERGREE RO, FHTH
RUEBBEEEVHEHLE, Y FFERFTRT FHNER.

HAN21#E, AREEFREMAN WTO, A VHERESLHRENRR. R
EEEFLERE0HLRKRETRELR, E5LAERML, ¥E50F. £
REEBERM, BHRAZE. BRERANLKEREEET LINERE 46
71, REBEBATEEHFEARASHREEEE. SIAEIMERFHERG
FUN, EAEERERBHFREERREATGERY, REFTH A bt AH
R REE EEARAA RS — & EAH,

Al BERERIHERFTHREEEFREANEOER MW H R L
TH. ARRETHAER, —REHKE, —RERMNE. EHEHT LR
BERMERAARMERANENT, SLBEHEHE, -3 #6020 57
EMELHENKR, XERMUREZR T/ SHEE, HEARDRHRELR
FERFBELER. RBHBRAZ PR RERRFERBFARYEEER,
RRTENERERHNFERRTN —RAT, TENBLEREEN, SEAR
KEGERAEL. :

RREM#TERER TR BGERF ANFERHLNARLL T, HERELE
REBRFENER. BR) 245, A AREIRMHTE KRB0 RA L,
EEXETEARENEL AFHAL LW ERZBEHTRAEE R, XF, Jomn Wiley
2B R JUR B30 12 BH BT 50 8 Bl B 4 Silberschatz K389 22 % 1 (4
AOBAE), REMNEIRERH, RTREE LA B #H. William Stallings
REURE TEXERIRANERNSEERATHMN, oS HEMBRELTEL
ERMMEREEEDLSBEN T ENBEE TEMME, B AEM T RAR
WPAEE. HXPE¥H Jiawei Han £ 4 8 (BELHE) 28+ L4 EL#
B ¥, mk%F B ¥ Thomas Cormen FE 4 T ¥ 5. Fh T A%H /L

¥ ERAEARENRREE (HETR), BEFHT 11 FHEEZE T 2001 F 1K
T# ZMK. B WEH T %£E Massachusetts & ¥ # James Kurose ¥ 3%, ¥ A £E = F
BREE 0ARBAERPE AL RFER, dhELS GHENNEY BBE, YU
EEEFH. NEEHATEIRY. EEIRKIABMEN T T, HERTF LK
HBTARRARNTE. IEFHNBEMELTHES. F4MH. ERARREHF
MERE S,

HERCALEAARESIGERERRSES LA THE, XEES#FEREEHER
FEREETLARE. BNASHAEHRHAIHES, TRERZTHHE #E 4
RAFHHMN, TELETHE MRS LR TR, EL5IARAHNES
ENEREAREY, LS ARFR¥LnBRE PENRTTHE X, SEHEK
AR FEANHRHEELYT KRTHERERA.

ESI MM ER, RIERBFHLREK, FERF IS ERHHFEAR
HET i, REHRMAHAT, ERNGRFOEMAENTKREL, £BREE
Bwgst, ERFFLANIFEL LEARAN R 0K,

BR, MABEELE IS FIERBA TR ESRAELOTHR, K42 M
REFEENFBEARAAGEER 2 - THABSEYREIR TFRALATR
RENNTABKEAL, 5ES 0L BRI EL OV ELSE, WEHIELIT
e N EEKFRN, WRE AN LR RGLRRR, TEREFATI #H
M REE.

RNFERIRBER, SARENRE, AREER-ARBHRENEER
RAA, RERERSEASHERESLS, RARFDEEF LW RER R, Mk
HERELLAR, ATHHENEREFHBRRALE.

KEHHEHT T
ZOOZ4=K

Preface

Software architecture is an emerging discipline and an exciting career path for
software professionals. We encourage both new and experienced practitioners
to read this book as an aid to becoming better software architects. You may
have noticed that most software books today do not say much about software
architecture. Here, in this volume, we’ve concentrated the knowledge that you
need to be the most effective architect possible.

As co-authors, we have lived through the experience of graduating from
“member of technical staff” developers to becoming practicing software archi-
tects at the most senior levels of our respective companies. We are technical
people, not managers, and we enjoy the technical nature of our work. We enjoy
parity of salary and benefits with the senior managers at our respective firms.
In other words, we are none-the-worse-for-wear as a consequence of choosing
a software architecture career. We think that many of our readers would like to
gain from our experience. Hence this book.

This is more than a book about software architecture. It is a field manual
that can train you. We choose the pseudomilitary style, because it embodies an
essential attitude. As a software architect, you need many survival skills—
some technical, some political, some personal. While neither author has mili-
tary experience, we have seen software architecture become a battleground in
many ways. It is a battleground of ideas, as developers compete to forward their
own concepts. It is a battleground for control of key design decisions that

XVi

xvi

PREFACE

may be overruled by managers or developers, perhaps covertly. It is a battle-
ground with many risks, since architects are responsible for a much wider range
of technical and process risks than most managers or individual developers.

If you are a practicing software architect, we know that you are a busy
professional. After buying this book, we would suggest that you peruse the
table of contents and the index for topics that are new to you. Focus on those
sections first. When you have time, we suggest that you attempt a cover-to-
cover read-through, to familiarize yourself with all of the covered topics and
terminology.

If you are new to architecture and want to become a software architect,
we suggest that you do a cover-to-cover read-through beginning with the first
chapter. Work the exercises provided, which will add an experiential learning
element to your experience base.

RAPHAEL MALVEAU
THOMAS J. MowBRAY, PH.D.
McLean, Virginia, U.S.A.

ACKNOWLEDGMENTS

We would like to express our thanks for all of the generous support of our
friends and the technical contributions of our fellow software architects. In par-
ticular, we wish to recognize: Jan Putman, Kirstie Bellman, Liz Zeisler, Thad
Scheer, Marc Sewell, Laura Sewell, Hernan Astudillo, Theresa Smith, Roger
Hebden, Chip Schwartz, Jack and Gillian Hassall, John Eaton, Dr. Amjad
Farooq, John Holmes, John Weiler, Kevin Tyson, Kendall White, Chibuike
Nwaeze, Dave Dikel, David Kane, John Williams, Bhavani Thuraisingham,
Jim Baldo, Eric Stein, John Hetrick, Dave Gregory, John Bentley, Nigel Pates,
Richard Taylor-Carr, Dan Lam, Garrett Fuller, David Broudy, Mike Baba, Burt
Ellis, Matthew Presley, Robert Davis, Peter Lee, Linda Kemby, Georgene
Murray, Alfredo Aunon, Jim Gray, and Woody Lewis.

xXiX

CONTENTS

Preface xvii
Acknowledgments xix

ONE INTRODUCTION 1

1.1 Adyvice for Software Architects 2
Word of Caution 3
Nascent Body of Knowledge 3
Confusion and Gurus 4
Professional Jealousy 4
The Management Trap 5
Defining Software Architecture 6
Misuse of the Term “Architecture” 6
Before Architecture 7
The Software Crisis 7

1.2 Software Architecture as a Discipline 8
Architecture Approaches 9
Common Principles 10
Architecture Controversies 11
Innovative Software Architecture 12
The Architecture Paradigm Shift 13

X

CONTENTS

13

14
1.5

A Standard for Architecture 18

Applications and Profiles 25

Viewpoint Notations 26

Design Patterns and Software Architecture 26
Design Patterns 27

Software Design-Level Model 28

AntiPatterns 37

Conclusions 38

Exercises 38

Two

SOFTWARE ARCHITECTURE:
BASIC TRAINING 41

2.1

22
23
24
25
2.6

Software Paradigms 42

Object-Oriented Paradigm 42

Technology and System Scale 43

Objects Are the Commercial Baseline 44
Databases and Objects 45

Obiject in the Mainstream 46

Toward Components: Scripting Languages 46

Componentware: The Component Orientation Paradigm 46

Components versus Objects 47

Component Infrastructures 48

Component Software Patterns 50

Component Software Architecture 51
Component-Based Development 51

Open Systems Technology 53

Client Server Technology 57

Software Application Experience 68
Technology and Application Architecture 71
Applying Standards to Application Systems 74

L

CONTENTS Xt
2.7 Distributed Infrastructures 78
2.8 Conclusions 88
29 Exercises 89

THREE SOFTWARE ARCHITECTURE:

GOING TO WAR 93

3.1 Software Architecture Paradigm Shift 93
Traditional System Assumptions 94
Distribution Reverses Assumptions 94
Multiorganizational Systems 95
Making the Paradigm Shift 95

3.2 Doing Software Wrong 96
This Old Software 97
An Example: Doing Software Wrong 97
Enter the Knight: Heroic Programmers 98

3.3 Doing Software Right: Enterprise
Architecture Development 99
Architecture-Centered Process 100
Step 1: System Envisioning 102
Step 2: Requirements Analysis 102
Step 3: Architecture Planning 103
Computational Interface Architecture 105
Distributed Engineering Architecture 106
Technology Selection Architecture 106
Step 4: Mockup 108
Step 5: Architecture Prototyping 108
Step 6: Project Management Planning 109
Step 7: Parallel Incremental Development 110
Step 8: System Transition 110
Step 9: Operations and Maintenance 111
Step 10: System Migration 111

X1l CONTENTS
34 Bottom Line: Time, People, and Money 112
3.5 Conclusions 112
3.6 Exercises 113

FOUR SOFTWARE ARCHITECTURE:

DRILL ScHOOL 115

4.1 Architecture versus Programming 116
The Fractal Model of Software 116
Major Design Forces 116
The Effect of Scale on Forces 117
Software Design Levels 117
Using Design Levels 118

4.2 Managing Complexity Using
Architecture 118
Creating Complexity 118
Option 1: Sweep It Under a Rug 119
Option 2: Hide It in a Crowd 120
Option 3: Ignore It 120
Option 4: Slice It 121
Option 5: Dice It 121

4.3 Systems Integration 121
4.4 Making the Business Case 127

4.5 Architecture Linkage to Software
Development 131

4.6 Architectural Software Notation 137
4.7 Conclusions 150
4.8 Exercises 150

CONTENTS xim

FivE LEADERSHIP TRAINING 153

5.1 Leadership Is a Necessary, Learnable Skill 154
5.2 The Architect as Team Builder 155

5.3 Always Insist on Excellence in Deliverables 156
5.4 Architect’s Walkthrough 162

5.5 Conclusions 166

5.6 Exercises 166

Six SOFTWARE ARCHITECTURE:
JUMP SCHOOL 167

6.1 Process 167

6.2 Creating New Processes 175
6.3 Teamwork 176

6.4 Conclusions 183

6.5 Exercises 183

SEVEN COMMUNICATIONS TRAINING 191

7.1 Communications Challenges 192

7.2 Responsibility-Driven Development 193
7.3 Communication Responsibilities 194
74 Handling Feedback 195

7.5 Exercises 196

EIGHT SOFTWARE ARCHITECTURE:
INTELLIGENCE OPERATIONS 199

8.1 Architecture Mining 200

S
Xiv CONTENTS

Top Down and Bottom Up 200
Architecture Farming 201
Architecture Mining Process 201
Applicability of Mining 202

Mining for Success 203

Horizontal versus Vertical 203
Horizontal Design Elements 206
What about Traceability? 208
Designing for Future Applications 208

8.2 Architecture Iteration 209
Software Process Background 210
The Role of Architecture Process 212
The Macro Process: Architecture Iteration 215
Developer Reaction to Architecture 216
After Intelligence, Iterate the Design 219
The Micro Process: Architecture with Subprojects 220
Architecting in Chaos 222

8.3 Architecture Judgment 225
Problem Solving 226
Review and Inspection 228

84 Conclusions 229
8.5 KExercises 230

NINE SOFTWARE ARCHITECTURE:
PSYCHOLOGICAL WARFARE 233

9.1 Alternative Learning 233

9.2 Internal Control 234

93 Expectation Management 234
94 Psychology of Truth 235

9.5 Perception Is Not Reality 236

anem
CONTENTS

xXv

9.6 Exploiting Human Weaknesses 238
Reference Models as Perception 239
Biological Response Model 240
Group Applications of Response 241

9.7 Example: Reference Selling 242
9.8 Psychology of Ownership 243
9.9 Psychological Akido 245

9.10 Intellectual Akido 247

Winning the War 249
Winning the Peace 250

9.11 Conclusions 251
9.12 Exercises 252

Appendix A Architecture Example: Test Results Reporting System 257
Appendix B Design Templates and Examples 277

Appendix C Glossary of Software Architecture Terminology 295
Appendix D Acronyms 303

Appendix E Bibliography 305

Index 311

INTRODUCTION

software architect, and you want to expand your knowledge of the disci-

pline? This is a book about achieving and maintaining success in your
software career. It is also about an important new software discipline and tech-
nology, software architecture. It is not a book about getting rich in the software
business; our advice helps you to achieve professional fulfillment. Although
the monetary rewards are substantial, often what motivates many people in
software architecture is being a continuous technical contributor throughout
their career. In other words, most software architects want to do technically in-
teresting work, no matter how successful and experienced they become. So the
goal of this book is to help you achieve career success as a software architect
and then maintain your success.

In this book we cover both heavyweight and lightweight approaches to
software architecture. The role of software architect has many aspects: part
politician, part technologist, part author, part evangelist, part mentor, part psy-
chologist, and more. At the apex of the software profession, the software archi-
tect must understand the viewpoints and techniques of many players in the IT
business. We describe the discipline and process of writing specifications, what
most people would consider the bulk of software architecture, but we also
cover those human aspects of the practice which are most challenging to archi-
! tects, both new and experienced.

S 0 you want to become a software architect? Or perhaps you are already a

CHAPTER ONE INTRODUCTION

So what does a software architect do? A software architect both designs
software and guides others in the creation of software. The architect serves
both as a mentor and as the person who documents and codifies how tradeoffs
are to be made by other software designers and developers. It is common to see
the architect serve as a trainer, disciplinarian, and even counselor to other
members of the development team. Of course, leadership by example will al-
ways remain the most effective technique in getting software designers and de-
velopers on the same page.

ADVICE FOR SOFTWARE ARCHITECTS

“Success is easy; maintaining success is difficult.”—J.B.

If you have a focus for your career, gaining the knowledge you need in order to
advance can be relatively easy. For software professionals, simply building
your expertise is all that is needed in most corporate environments. For exam-
ple, we often ask software people what books they have read. In the West, most
professionals are familiar with design patterns (see Section 1.3). And many
have purchased the book by Erich Gamma and co-authors that established the
field of design patterns [Gamma 94). Some have even read it. However, it al-
ways surprises us how few people have read anything further on this important
topic.

For software architect books, the situation is even worse. Possibly the
reason is that there are fewer popular books, but more likely it is that people
are not really focused on software architecture as a career goal. In this book se-
ries, by publishing a common body of knowledge about software architecture
theory and practice, we are eliminating the first obstacle to establishing a soft-
ware architecture profession. However, making this information available does
not automatically change people’s reading habits.

So, if the average software professional only reads about one book per year,
Just think what you could do in comparison. If you were to read three books on
design patterns, you would have access to more knowledge than the vast major-
ity of developers on that important topic. In our own professional development,
we try even harder—at least a book each month, and if possible, a book every
week. Some books take longer than a week—for example, the 1000-page book
on the Catalysis Method [D’Souza 98]. In our opinion, it contains breakthroughs
on component-oriented thinking, but so few people are likely to read it thor-
oughly (except software architects), that it becomes a valuable intellectual tool

