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Preface

Software architecture is an emerging discipline and an exciting career path for
software professionals. We encourage both new and experienced practitioners
to read this book as an aid to becoming better software architects. You may
have noticed that most software books today do not say much about software
architecture. Here, in this volume, we’ve concentrated the knowledge that you
need to be the most effective architect possible.

As co-authors, we have lived through the experience of graduating from
“member of technical staff” developers to becoming practicing software archi-
tects at the most senior levels of our respective companies. We are technical
people, not managers, and we enjoy the technical nature of our work. We enjoy
parity of salary and benefits with the senior managers at our respective firms.
In other words, we are none-the-worse-for-wear as a consequence of choosing
a software architecture career. We think that many of our readers would like to
gain from our experience. Hence this book.

This is more than a book about software architecture. It is a field manual
that can train you. We choose the pseudomilitary style, because it embodies an
essential attitude. As a software architect, you need many survival skills—
some technical, some political, some personal. While neither author has mili-
tary experience, we have seen software architecture become a battleground in
many ways. It is a battleground of ideas, as developers compete to forward their
own concepts. It is a battleground for control of key design decisions that
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may be overruled by managers or developers, perhaps covertly. It is a battle-
ground with many risks, since architects are responsible for a much wider range
of technical and process risks than most managers or individual developers.

If you are a practicing software architect, we know that you are a busy
professional. After buying this book, we would suggest that you peruse the
table of contents and the index for topics that are new to you. Focus on those
sections first. When you have time, we suggest that you attempt a cover-to-
cover read-through, to familiarize yourself with all of the covered topics and
terminology.

If you are new to architecture and want to become a software architect,
we suggest that you do a cover-to-cover read-through beginning with the first
chapter. Work the exercises provided, which will add an experiential learning
element to your experience base.

RAPHAEL MALVEAU
THOMAS J. MowBRAY, PH.D.
McLean, Virginia, U.S.A.
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INTRODUCTION

software architect, and you want to expand your knowledge of the disci-

pline? This is a book about achieving and maintaining success in your
software career. It is also about an important new software discipline and tech-
nology, software architecture. It is not a book about getting rich in the software
business; our advice helps you to achieve professional fulfillment. Although
the monetary rewards are substantial, often what motivates many people in
software architecture is being a continuous technical contributor throughout
their career. In other words, most software architects want to do technically in-
teresting work, no matter how successful and experienced they become. So the
goal of this book is to help you achieve career success as a software architect
and then maintain your success.

In this book we cover both heavyweight and lightweight approaches to
software architecture. The role of software architect has many aspects: part
politician, part technologist, part author, part evangelist, part mentor, part psy-
chologist, and more. At the apex of the software profession, the software archi-
tect must understand the viewpoints and techniques of many players in the IT
business. We describe the discipline and process of writing specifications, what
most people would consider the bulk of software architecture, but we also
cover those human aspects of the practice which are most challenging to archi-
! tects, both new and experienced.

S 0 you want to become a software architect? Or perhaps you are already a



CHAPTER ONE INTRODUCTION

So what does a software architect do? A software architect both designs
software and guides others in the creation of software. The architect serves
both as a mentor and as the person who documents and codifies how tradeoffs
are to be made by other software designers and developers. It is common to see
the architect serve as a trainer, disciplinarian, and even counselor to other
members of the development team. Of course, leadership by example will al-
ways remain the most effective technique in getting software designers and de-
velopers on the same page.

ADVICE FOR SOFTWARE ARCHITECTS

“Success is easy; maintaining success is difficult.”—J.B.

If you have a focus for your career, gaining the knowledge you need in order to
advance can be relatively easy. For software professionals, simply building
your expertise is all that is needed in most corporate environments. For exam-
ple, we often ask software people what books they have read. In the West, most
professionals are familiar with design patterns (see Section 1.3). And many
have purchased the book by Erich Gamma and co-authors that established the
field of design patterns [Gamma 94). Some have even read it. However, it al-
ways surprises us how few people have read anything further on this important
topic.

For software architect books, the situation is even worse. Possibly the
reason is that there are fewer popular books, but more likely it is that people
are not really focused on software architecture as a career goal. In this book se-
ries, by publishing a common body of knowledge about software architecture
theory and practice, we are eliminating the first obstacle to establishing a soft-
ware architecture profession. However, making this information available does
not automatically change people’s reading habits.

So, if the average software professional only reads about one book per year,
Just think what you could do in comparison. If you were to read three books on
design patterns, you would have access to more knowledge than the vast major-
ity of developers on that important topic. In our own professional development,
we try even harder—at least a book each month, and if possible, a book every
week. Some books take longer than a week—for example, the 1000-page book
on the Catalysis Method [D’Souza 98]. In our opinion, it contains breakthroughs
on component-oriented thinking, but so few people are likely to read it thor-
oughly (except software architects), that it becomes a valuable intellectual tool



