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Preface

This book is designed to form a one-semester course of sixty class hours in
continuum mechanics at the first-year graduate level. The book is based upon notes of
courses I have taught over the past twenty years to postgraduate students of specialties
in Rheology, Solid Mechanics and Metal Materials at Xiangtan University. I wrote it in
English in order to enhance the English level of the Chinese students. While students at
first might find this a bit difficult, I believe that with the additional efforts required
they will be requited with the resulting gain in ability.

The book presents an introduction to the theories of contintum mechanics. These
theories are important, because not only they are applicable to a majority of the
problems in continuum mechanics arising in practice, but also they form a solid base
upon which one can readily studies theories of mechanics that are more complex.
Further, although attention is limited to the classical theories, the treatment is modern
with a major emphasis on foundations and structures. The reader will soon find that he
needs to do some work on the side to fill in details that are omitted from the text.
Furthermore, many of the important points are in the problems assigned for solution by
the student. The reader who does not at least try to solve a good many of the problems
is likely to miss most of the point.

Throu%hout this book, we will use the tensor notations that used by Guo
Zhongheng", which is, in some aspects, different from those used by some foreign
scholars as Truesdell™), etc. It is presumed that readers are already familiar with the
theory of tensors. Many of the result from theory of tensors will merely recall here and
then applied. Concise notes on theory of tensors, which have the same notations of this
book and originally appeared in my VISCOELASTIC FRACTURE MECHANICS™*,
are present in Appendix A for reference.

The main part of the book has been written by Zhang Chunyuan with the help of
Prof. Zhang Weimin and the Examples and the Exercises are due to Zhang Weimin.

This book was supported by the Foundation of Hunan Education Committee, the
Foundations of Xiangtan University and Key Science of Mechanics in Xiangtan
University. I own so much to so many of colleagues, friends, and students. I gratefully
acknowledge Prof. Yang Tingging, Prof. Zhou Yichun, Prof. Zhang Ping and many
others for their comments and helps. I also wish to thank many of my students, without
their discussions, the book would not have taken this form. Finally, I am extremely
grateful to my wife, Prof. Ning Yagin and my parents for their encouragement,
discussions and helps.

Zhang Chunyuan

Xiangtan, Hunan April 14, 2003
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1 INTRODUCTION

1.1 Rational Continuum Mechanics

The sixth of problems that famous mathematician Hilbert set for the twentieth
century to solve was the formulation of an axiomatic structure for physics, and
especially for mechanics. Since the efforts of Noll, Coleman and many other authors in
the past fifty years, a beautiful flower of rational mechanics finally comes into bloom.
Rational continuum mechanics is a new course of mechanics of a complete axiom
system that set-up based upon the production and a wealth of experiential facts.
Following the basic laws that must be obeyed by the motion of materials and using the
strict logical thinking and inference, it studies the general laws of the motion and
deformation of materials. It avoids the microstructure of the matters, and set-up a
theory of continuous field. It reflects the characteristic of the modern mechanics, which
extends the study from method of analysis to that of synthesis, from problems of
Equilibrium State to that of Non-equilibrium State, from linear problems to nonlinear
problems and from macroscopic continuous bodies to bodies having internal structures.
It is a cognition leap from the approximate theory to rigorous theory and that from
accumulation of knowledge to mathematical abstraction. It strongly affects the
traditional education and research works and greatly enhances the capacity of solving
practical problem by mechanics. This course began in 1945 by Reiner and Rivlin.
Afterwards, it has great development due to the efforts of Truesdell, Noll, Coleman and
others. In China, Qian Weichang held the first national symposium of Rational
Mechanics in Langzhou in 1979,

1.2 Rational Continuum Mechanics and Rheology

Rheology and Rational Mechanics are twin courses developed simultaneously.
Rheology focuses its attention at the research of the nonlinear viscoelastic responses of
matters. It mainly discusses the constitutive relations of materials. While Rational
Mechanics take the formation of mathematics system of continuum mechanics for its
aim. Both of them research on the common properties of materials, which do not
distinguish solids and liquids.



* 2 An Introduction to Continuum Mechanics

1.3 System of Rational Mechanics

Mechanics does not study natural things directly™”. Instead, it considers bodies,
which are mathematical concepts designed to abstract some common features of many
nature things. One such feature is the mass assigned to each body. Bodies are always
found to occupy some place. The theory of places, which is called geometry, was
created long ago thus lies ready to hand for application in mechanics. The change of
place undergone by a body in the course of time is called the motion of that body, and
description of motion, or kinematics, is the second part of the foundation of mechanics.
Third, motions of bodies are conceived as resulting from or at least being invariably
accompanied by the action of forces. Fourth, the gain and loss of heat give rise to the
concepts of the energy, temperature, and calorie of a body. Thus, mechanics is a
mathematical model, or better, an infinite class of models, for certain aspects of nature.

Kinematics, then, being presumed, mechanics rests upon four substructures:
theories of bodies, forces, energies, and calories, in connection with places, times, and
temperatures. These substructures provide the concepts mechanics is to connect.
Relations among them are of two kinds: the general ones, common to all the bodies
entering a given branch of mechanics, and particular ones, which distinguish one class
of such bodies from another. The former kind constitutes two theories: statics, which
compares putative equilibrium, and dynamics, which refers to motions of all sorts.
Relations of the later kind, which define particular bodies, are called constitutive.

1.3.1  Primitive elements

The primitive elements of mechanics are “bodies”, “motions” and “forces™?),
These elements are governed by assumptions or laws, which describe mechanics as a
whole.

1.3.2 Basic laws

The primitive elements must obey the basic laws commonly. The laws abstract
the common feature of all mechanical phenomena. The basic laws include:
conservation of mass, balance of momentum, balance of moment of momentum,
conservation of energy and balance of entropy or equivalently, Clausius-Duhem
inequality (the second law of thermodynamics).

In cases of continuous fields, they become the field equations and in cases of
non-continuous fields, they become the discontinuity conditions.

1.3.3 Constitutive relations

Based on the experimental evidence and guided by the basic principles the
constitutive equations describing materials having different characteristic can be found.
Constitutive equations serve as models for different kinds of bodies. They define ideal
materials, intended to represent aspects of the different behaviors of various materials
in a physical world subjected to simple and overriding laws. The basic principles
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include: principle of determinism, principle of local action and principle of
frame-indifference. The improvement of model characterizes that the cognition of
human being is deepened.

Field equations (or discontinuity conditions) and constitutive equations constitute
the governing equations, which can be solved under the initial conditions and
boundary conditions.

Primitive elements, basic laws and the constitutive equations constitute the system
of rational continuum mechanics.

In order to establish the mathematical formulation of any physical phenomenon
that take place in a material bodym we need to establish a correspondence between the
elements of the physical body and the idealized mathematical body. The mathematical
axioms and operations can then be used to study various problems, which can be
translated back to the physical body with rules of correspondence established. The
predictions so made can be compared with observations testing the limitations of the
theory. All mechanical phenomena are considered to be the result of body points with
mass under a variety of external conditions. The mathematical idealization to bodies
can be made in the following broadest sense: The body points {P} of a body constitute
the elements of a set, called the material body #. These elements are considered to
be known a priori from certain physical considerations that are fundamental to the
structure of the mathematical theory of the physical phenomena, which we wish to
study. The set.# is considered to be a subset of the universal set . This is the frame of
reference or the universe for the discussion of #. The
complement of &, denoted by %’, is the set of elements, which
are not in.% (Fig. 1.3-1). This may be envisioned as the space
surrounding the body, which may contain other bodies as well.
Both. % and %’ may contain subsets. Further, we shall introduce
some coherence (geometric structure) to the elements of these
sets so that these sets can be organized to a space. For Fig.1.3-1 Body
mathematical operations, it is also necessary to establish rules
of operations. This corresponds to the physical laws, This program then establishes the
ideal mathematical body corresponding to the physical body. Summarizing we have:

Physical body ©set s

Body points <elements {P} of set.#

Frame of reference <>the universal set %

Structure of body ©topological structure of &

Physical laws ©operation rules among {P} and among.% and ¥ or &’

A physical theory is concerned with the evolution of the topological structure of
the body and the interrelations between the body and the external world %’. The
difference in the nature of the physical phenomena arises from the difference in the

nature of the structure of the set.# and the operations to which the elements of & are
subject.
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Chapter 2 deals with the deformation and kinematics of continua. This is a pure
geometrical problem and has no concern with the course of deformation and motion
and the property of the continua. In the first nine sections of this chapter, we present an
analysis of the deformation of material bodies and develop relationships between the
parts of the deformed and undeformed body when the displacement of the body is
prescribed point-wise. The remaining part of this chapter discusses the changes of
various variables of kinematics with time.

2.1 Bodies, Configurations and Motions

2.1.1 Bodies

Manifold (see A.9) is an important concept in modern mathematics and physics. It
is the generalization of Euclidean space. Roughly speak, in the neighborhood of any
point in a manifold is homeomorphic to an open set of Euclidean space, so that we may
introduce local coordinate systems. A manifold (For example, a spherical surface) can
be considered as a topological space glued by many pieces of “Euclidean
spaces”(small planes). It is just a higher-dimensional analogue of a smooth curve or
surface.

A body & is a manifold of body points, denoted by P. Body is a set of body points.
In continuum mechanics the body manifold is assumed to be smooth, that is, a
diffeomorphism of a domain in Euclidean space. Thus, by assumption, the bod‘y point P
can be set into one-to-one correspondence with triples of real numbers X', X%, X°,
where the X* run over a finite set of closed intervals. Such triples are sometimes called
“intrinsic coordinates” of the body point, but we shall not need to use them explicitly.
The mapping from the manifold to the domain is assumed differentiable as many time
as desired, usually two or three times, without further mention.

The body & is assumed also to be a o-finite measure space with non-negative
measure M%) defined over a o-ring of subsets 2, which are called the parts of &.
Henceforth any subset of % to which we shall refer will be assumed to be measurable.
The measure M(%P) is called the mass distribution in.%.

The two fundamental properties of a continuum body % are:

1. & consists of a finite number of parts that can be mapped smoothly onto cubes
in Buclidean space.

2. & is a measure space.
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Bodies are available to us only in their configurations, the regions they happen to
occupy in Euclidean space at some time. These configurations are not to be confused
with the bodies themselves.

When we research the non-compatible physical problems, such as fracture,
welding, wound and healing, the concept of manifold is more important.

2.1.2 Configurations

A body % (the dotted line in Fig. 2.1-1) can be mapped smoothly onto a domain in
Euclidean space. The region it happens to occupy in Euclidean space at some time is
called the configuration (the solid lines) of the body. Often it is convenient to select
one particular configuration and refer every thing concerning the body to that
configuration, which need be only a possible one, not one ever occupied by the body.
Such a configuration is called the reference configuration. Generally, we will use the
region occupied by the body at ¢ = 0 in Euclidean space as reference configuration.
This configuration is also called the initial configuration. Let kbe such a configuration.
Then the mapping

P =x(P), Pe # (2.1-1a)

Fig. 2.1-1 Body, configuration and motion

gives the place vector P referred to the origin O and occupied by the body point P in
the configuration k. Since this mapping is smooth, by assumption,
P=x"'(P), PeR, R=x(=B). (2.1-1b)

2.1.3 Motions and coordinates

In order to describe the deformation and motion of the body, we will use two
independent curvilinear coordinate systems: {X*} in # and {(*} ins referred to two
independent Cartesian coordinate systems {X*'} and {1, respectively. A particular
body point P at 7 = 0 in {X*'} has radius vector P in {X*'} and has coordinates X* in



*6* An Introduction to Continuum Mechanics

{XK }. The coordinates X* can be viewed as the symbol of the body point P. XX remains
its value in the whole motion of the body. So that we may call x* (K=1,2,3) the
material coordinates' and (x* } the material coordinate system.

Since a body can be mapped smoothly onto a domain, it can be mapped onto any
other topological equivalent of that domain. A sequence (with the time ¢ as a parameter)
of such mappings

p=x(P,t), Pe &, te #Z', »,=x(Z.1) 2.1-2)
is called a motion J, where %" is the positive real axis. The configuration at time ¢ is
called the current configuration .

Substituting (2.1-1) into (2.1-2), we have
p=x&"®),0)=x,(P,1), »+=x.(#,1).P= e @0, E=x.(s1). (2.1-32)
or simply

p =pPP, 0o, P = Pp, 1, (2.1-3b)
or in coordinate notation

* = A o), X = X050 (2130
P (k=1, 2, 3) are called the spatial coordinates and {xk} the spatial coordinate system.

Motion can also be said to be the sequence of mappings from the initial
configuration to the current configuration with the parameter t. At t = 0, the body &
occupies the region.#Z with surface.% and volume 7 (see Fig. 2.1-1) referred to a fixed

Cartesian coordinate system {X* }. At time ¢ the body moves into the region » with
surfaces and volumes referred to the fixed Cartesian coordinate system {xk'}. Each

point P (X*) in.% at ¢ = 0 moves onto the point p (x*) in » at time .

Axiom of Continuity

In continuum mechanics, the mapping . is assumed to be one-to-one
correspondence, X, and x,{l are continuous and differentiable. Such a mapping is
called a homeomorphism. The Jacobian

ox' /aX' ox'/oX* ox'/ax?
J=det(x*x)=[ox* /9X"' x’/3X? aux’/aX>3>0 (2.1-4)
ox> /X' ox’/oX* oax*/ox?
at all points of Z.

It expresses that the matter is indestructible, that is, no region of positive, finite
volume of matter is deformed into a zero or infinite volume. Alternatively, the matter is
impenetrable, that is, the motion can only carry every region into a region, every
surface into a surface and every curve into a curve. No one portion of matter can
penetrate into another,

The motion that satisfies the axiom of continuity is called an admissible motion.
However, for the problems of fracture, welding, wound and healing, the mapping will
no longer be homeomorphic. The image of one point may be two points or the images

' 1t should be noted that in curvilinear coordinate systems, X* or x* are not components of a vector.
For the position vectors of P and p, we have P # X*Gy, p # g, (see (2.1-35)) in spite of dP = dX*Gy,
dp =dx'g, (see (2.1-9)). For example, in cylindrical coordinates p # rg, + Ogg + 28, but dp = drg, +
d@ﬂ + dzgz
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of two points may be one point.

Henceforth, the coordinates x* for the deformed body are called spatial or
Eulerian whereas the coordinates X* of the nature state are called material or
Lagrangean. The quantities referred to the spatial coordinates will be denoted by small
Latin kernel letters and their components by small Latin indices. The quantities
referred to the material coordinates will be denoted by large Latin kernel letters and
their components by large Latin indices.

2.1.4 Base vectors, metric tensors, shifters, displacements

Base vectors, metric tensors
The place vector P of point P in.% and the corresponding place vector p of point P
in », respectively, are
P =X, p =i (2.1-5)
Ip - I = 6y, iy - By = & (2.1-6)
The non-coplanar base vectors G and g, can be defined, respectively, as
P _oP ox* ox*

G"(P)zax" S aXF ox*  x* Io=X%xly, 2.1-7)
dp _dp oxt _oxt, -,
gk(p)=a—xk—=??=—a?—lk-=xk,klk.. (21‘8)
The differential vector elements dP at P and dp at p, respectively, are
aP
| dP == dX* =G, dx *, dp=§:;kdx*=gkdx". (2.1-9)
The reciprocal contravariant base vectors G and g* are defined as
G*¥. G =&, g -a=8& (2.1-10)

The covariant metric tensors are defined as
GaP) =Gk -GL=X", X*, 8, = X", X¥,,

gulp) = g - &1 =2, X, 8, =a" 2, 2.1-11)
The contravariant »components G- and g" of the metric tensors satisfy the following
equations

GGy = &1, g7gm = & 2.1-12)
The solutions of these equations are

G™ = (cofactor of Gyr)idet Gy = (1/2G) €2 &5 Gpp Gys, (2.1-13)

g" = (cofactor of gy)/det gu = (112g) €™ € g, Zas» (2.1-14)

where ‘

G = det Gr =(1/31) €2 & Gy Gpr Ggs, (2.1-15)

g = det gy =(1131) €™ & g g, g0 (2.1-16)
The reciprocal base vectors GX and g" are calculated by

G* = ¢ ¢, g =g (2.1-17)
On the other hand, we have

G* =x*,1,, g =i (2.1-18)

Thus, we have
GM =x*,. X", g =x, 2, (2.1-19)
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and
G = Gl = X%, g = lgul = 0¥, (2.1-20)
G ! =1GM = X* g ! =1g% = i (2.1-21)
Shifters

Shifters are two point tensors. We first give the definition of two-point tensors.
Quantities that transform like tensors with respect to the indices K and k upon
transformation of each of the two sets of coordinates, {x*}—> {x*} and {X*}—{X*},
are called two-point tensors. If

H=xeh,  x¥=x"x" (2.1-22)
are differentiable coordinate transformations, and if
kK K
T c(p', P)= gif gix' T*x(p, P)= A¥ AXT*x (p, P), (2.1-23)
29

%
then T*K(p, P) are the components of an absolute two-point tensor field T'(p, P) .

X
T(p,P)=T"x(p, P)g,(p)G" (P). (2.1-24)
Here we use notations “(” and “)” above the tensor T to denote the tensor in.# and
in~, respectively. Deformation gradients and shifters are examples of two-point tensors.
The algebraic operation of two-point tensors is the same as those of one-point tensors.
The difference is that shifters appear in the dot product of two different sets of base
vectors.
Now we may express the sets (Gx, G¥) and @x ") in terms of one anther in a
unique way
Gy=28,'8,, G "=g"¢". g=2"G,., g =g"«G", (2125
where the coefficients
g'r =8, =Gx(P)g"(P)=g"Cug", &"1=g"=G*(P)g,(p)=5,G"g.',
g% =" =G "(P)g"(1)=G"g"gy, 8 =8n =G (P) g (P)=Gygug"
(2.1-26)
are called shifters. The last equations in (2.1-26) imply that the indices can be raised

and lowered by metric tensors. The dyadic forms of shifters are
X
I= gu(ngK = gkxngK = ngngK = ngngK’

o 2.1-27)
I=g,G"g" =¢,'G"g, =5":G,8" =2"G,g,.
Since
GL'GK =(ngg1)'(gKkgk)=nggKk’
we have
. K .k X 0%«
g. 81+=g,8 =06,, or II=I (2.1-28)
Since
g"gk =(g[LG]_)'(glKGK)=gIngK9
we have

o »n
g8 e x=¢"g =6 o II=I. (2.1-29)
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We also have
X » X P ik P ik
\/6=[G|Gst]=[I'Gl I-G,1-G,1=¢,8,8,18.:8,8:1=8:8:83¢(8.8:85]
=|ek|i8.2.2:1=|gk |V (2.1-30)

V& =[G,

By means of these tensors, we can express components of a vector in two
coordinate systems in terms of each other. For example, in two coordinate systems,
{XK}, {x"}, a vector v can be written as

v = V'GL = Vg, (or  v=ViG*=vgh. (2.1-31)
By taking the dot product of GX or gk (or G or g;) and the above equation, we obtain
the transiation rule of a vector
Ve =g, V= gV, V= gx've, ve= g Vi. (2.1-32)
or
¢ 0 Y XN«
v=1Iv, v=Iv. (2.1-33)

The translation rule of vectors may be viewed as a special transformation law gf

tensors. The shifters gy, g (we may drop the distinction between g x and gx kor gk

0
and ng) may be viewed as special coordinate transformation factors. If I applies to a
)

y ¢
vector v at point p ins, then v is shifted from p to the vector v at point P in%. If

X { ( )

I applies to a vector v at the point P in%, then v is shifted from P to the vector v
«

at point p in». vor v is the same vector. The only difference is that they are

considered at different point. We may shift the two-order tensors in a similar way.
Displacements. From Fig. 2.3-1 we see that
u= p-P+b (2.1-34)
where u is the displacement vector. u can be viewed as a vector in {X*}or {x*}.
P=X"I,=P"G,=P"g,'g, +X"G,,
p=x"i, =p'g, =p's, "G, #x'g,, (2.1-35)
u=U"G, =u'g,.

2.2 Description of Motion

In continuum mechanics, we may use the material or Lagrangean description and
the spatial or Eulerian description. The relative description will discuss in Section
2.9.2. Because of our hypotheses of smoothness, all are equivalent.

2.2.1 The material description or Lagrangean description

The material description or Lagrangean description takes P or X* and t as
independent variables. It is the description commonly used in modemn works on
continuum mechanics. In this description, the motion can be described by



