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PREFACE

With the appearance of this volume, the Mathematical
Association of America has embarked upon a new publishing
venture. The MAA Studies in Mathematics will bring to the
members of the Association, and to the general mathematical
community, expository articles at the collegiate and graduate
level on recent developments in mathematics and the teaching
of mathematics. We hope that these will help to overcome the
communication barrier which has arisen as a natural consequence
of the tremendous acceleration in mathematical development
that has taken place, especially within the last twenty-five years.

We hope that these volumes of short papers will be used as a
basis for seminars, reports, informal talks, and as supplementary
material to provide background knowledge for both students and
faculty. The range of topics will cover primarily the upper class
and beginning graduate years; the volumes that are planned at
present will have articles at different levels of difficulty, so that
the spectrum of each volume is wide.

The need for expository articles of this nature has been long
recognized. Indeed, the MAA set a precedent with its highly
successful “What Is ?”? series that first appeared in the
Monthly more than twenty years ago. Three years ago, Professor
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viii PREFACE

Richard V. Andree of the University of Oklahoma conceived of
the plan to reprint these articles in ‘a single volume; it at once
became clear that many would have to be rewritten to bring
them up to date, while at the same time there were many fields
of mathematics that were inadequately represented in the
original collection. Taking this as a personal challenge, Andree
approached a large segment of the mathematical community;
succeeding where others failed, he managed to overcome the
natural lethargy of research mathematicians, and amassed an
outstanding collection of expository articles. These will form
the core of the first few volumes of the Studies. We hope that the
momentum which Andree has given this effort will not die,
and that the present atmosphere, favorable to expository writing,
will persist,.

R. P. Dilworth

Chairman, Commiltee on Publications,
Mathematical Association of America
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INTRODUCTION
R. C. Buck

The four papers that are presented in this volume do not
pretend to cover all of modern analysis. They are, however,
representative; each discusses topics that are fundamental, both
for pure and for applied analysis, and which indeed should be
part of the experience of every practicing mathematician,
regardless of his field. These papers also achieve something
which seems more important to me, for they succeed in the more
difficult task of conveying some of the attitudes that are charac-
teristic of modern mathematicians.

It would be difficult to devise a concise definition of analysis
that is broad enough to cover all that now carries this label. It
would seem no longer appropriate to confine analysis to “the
theory of functions” since algebra and topology have equal
rights to claim this as their domain; indeed, algebra has been
called the study of homomorphisms, and topology the study of
continuous mappings. The dissolution of traditional boundaries
between branches of mathematics is probably the most striking
aspect of the modern period of development. In the field of
analysis, this has shown itself in a growing concern for matters of
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2 R. C. Buck

structure, and the emergence of what can only be called algebraic
analysis and topological analysis.

These trends are clearly visible in the selections that comprise
this volume. In the papers by Stone and Goffman, the algebraic
component is apparer:t. In looking at a continuous function, one
remains conscious of the fact that it is at the same time a member
of a class of functions forming a mathematical entity such.as a
linear space or an algebra. Alongside this, we cannot ignore the
realization that topological ideas lie at the heart of the fundamen-
tal processes of analysis; this is indeed the theme of the paper
by McShane, but it is implicit in that of Lorch as well. A modern
research paper on partial differential equations may refer to ‘“the
compact-open topology,” or to the equivalence of “the strong and
weak topology’’; a paper on function theory may speak of com-
pact sets rather than normal families, and may indeed discuss the
nature of closed ideals in an algebra of holomorphic functions.

This intermarriage of traditional analysis with its neighbors has
not come about as a rational decision of its practitioners. At first
sight, the change seemed to have been largely a matter of
semantics; one adopted the terminology of algebra and topology
solely as a convenience to describe briefly certain situations which
arose frequently. But it soon became evident that the adoption
of another viewpoint, another observation platform, gave a
clearer vision; the introduction of techniques borrowed from
other fields enabled the analyst to achieve both striking economies
in proof, and vivid insights into classical phenomena. Two prime
examples are included in these papers: the first is the treatment
of the Weierstrass approximation theorem, as given in the paper
by M. H. Stone; the second, included in the paper by Goffman, is
the unified treatment of certain existence theorems that is made
possible by the study of contraction mappings on complete
metric spaces. An even more persuasive example, not included
here, would be the chain of observations that start from the
classical theorems of Green and Stokes and culminate in the
connection between differential forms and cohomology theory.

Nor is this the only type of contribution that algebra and
topology have made to analysis. It is, of course, a platitude to
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say that they have suggested new problems in analysis. A
traditionalist might indeed agree that the query: “What are all
the ideals in the ring of entire functions?” is admittedly a new
problem for analysis, but express great disinterest in its solution.
Similarly, I am sure that a fifteenth-century algebraist would
have expressed an equal disdain to someone who asked about the
possible nature of the set of values of a polynomial

w=P@2)=24a22+ - - + anz™,

for all z with |z| < 1. What is perhaps more convincing to a
sceptic is the fact that the insights supplied by new points of
view have revived interest in older classical problems, showing
them to be the starting point for new attacks on fundamental
questions. This has been the case recently with the problem of
interpolation by bounded analytic functions, and the problem of
equivalence of measure-preserving transformations.

Another theme of modern analysis that is illustrated in detail
by the brilliant paper by Lorch is the role of the ‘“abstract”
approach in linear analysis. No one would deny that it is con-
venient to make use of a properly chosen basis at some stage in
the study of a particular linear transformation. But it is almost
always advantageous to postpone this step as long as possible.
This is most evident when one turns to linear operators on
Hilbert space; here, the use of matrices, indices, and summations
becomes tedious, distracting and, indeed, misleading. More-
over, every problem seems to have its own natural basis, its own
ideal set of coordinates, which is seldom the one initially given; it
therefore pays to begin by looking at the space abstractly,
unprejudiced by irrelevant bias.

A word or two about the specific contents of each of the papers
may be in order. The lead-off paper by McShane focuses on the
notion of convergence. Certainly, the idea of limit and sequence
is basic to elementary calculus. However, one mark of modern
analysis has been its concern with more general notions of limit,
and with nonmetric topologies and phenomena that escape the
restriction imposed by sequences. For example, consider the
topology on functions described as ‘“‘pointwise convergence.”



This is nonmetrizable; if § is the class of continuous functions f
with 0 < f(z) < 2 for 0 < z < 1 and such that

[, f@ds =1,

then the function 2 is in the closure of &, although (by the
Lebesgue convergence theorem) it is not the limit of any sequence
of functions in §. The importance of these ideas was seen
independently by E. H. Moore and M. Picone, and developed by
H. L. Smith, H. Cartan, and others, emerging as a sophisticated
tool formulated in terms of “nets,” ‘‘directed systems,” or
“flters.” In the present paper, McShane has given an extremely
lucid introduection to these ideas, using the notion of a “‘direction”
as the unifying principle. With many examples, he shows how a
single concept of limit can be used to discuss convergence of
functions, sequences, Riemann sums, and more general objects.
This. paper can be read by any student who has completed
elementary calculus and is prepared to re-examine the notion of
limit.

The second paper in the volume is reprinted, with minor
changes, from the Mathematics Magazine. It is a justly famous
paper, honored by being probably the most frequently cited
research paper in history. In its original form, it is virtually
unavailable; these facts alone would justify its inclusion in this
volume. However, the Stone-Weierstrass theorem, as the con-
tents of the paper have come to be known, represents one of
the first and most striking examples of the success of the algebraic
approach to analysis. There are many briefer. proofs of the
classical Weierstrass approximation theorem in the literature,
but no other presentation approaches this one in its richness of
insight, depth of application, and variety of gtructure. The
subject of study is the space § of continuous real-valued func-
tions on a compact space S; the central problem is to characterize
the functions that are uniform limits of functions generated from
a subset §o by means of certain specified algebraic operations.
In turn, Stone allows first the lattice operations max and min,
then these together with addition, and finally addition and
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multiplication alone. In each case, the result is used to charac-
terize the appropriate closed ideals in §. By specializing S and &,
Stone then obtains a wide variety of interesting applications,
ranging from the Tietze-Lebesgue-Urysohn extension theorem
and a theorem of Dieudonné on approximation of funetions of
infinitely many variables, to the Peter-Weyl theorem on group
representations. More unusual, perhaps, are the sections dealing
with approximation on [0, ©) and (— =, =), related to the
study of Laguerre and Hermite polynomials. Although this paper
calls for a greater mathematical sophistication than is common
with undergraduates, I cannot think of a better introduction to
the spirit of modern mathematics.

Turning now to the third paper, Lorch has managed, in a
comparatively brief span, to give a lucid and even anecdotal
account of the historical development of the spectral theorem.
Starting with the three-dimensional case and a linear transforma-
tion H, he asks: “Is there a basis for the space in which the matrix
for H becomes especially simple?”’ Motivating each transition
point, the reader is led through the analysis of this case, the formu-
lation of the general problem for symmetric operators H on Hilbert
space, the nature of the solution when H is completely con-
tinuous, and the new phenomena that arise when H is allowed
to be merely continuous. Finally, omitting details of the proofs
but presenting the ideas convincingly, Lorch outlines a treat-
ment of the unbounded (self-adjoint) case based upon the
von Neumann approach.

The great breadth of subject-matter within modern analysis is
illustrated by the fact that the concluding paper by Gofiman,
written independently of that by Lorch and in the same general
area, has remarkably little overlap. Functional analysis—and
indeed, the idea of abstract spaces themselves—seems to have
arisen at the close of the nineteenth century. Initiated and
encouraged by E. H. Moore and Volterra, the stimulus came in
part from the study of the calculus of variations, and from recent
discoveries in differential and integral equations. It is with this
background that the paper by Goffman opens. Many funda-
mental results in classical analysis can be transcribed to assert
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that some continuous transformation 7' on a space of functions
has a fixed point fo, with T'(fo) = fo; it i8 natural o attempt to
find f, by examining the sequence of iterates Tg, for some initial
guess ¢g. This leads in turn to the study of distance-decreasing
mappings on metric spaces, and the exploration of the notion of
compactness in function spaces. This again proves its usefulness
when one tries to minimize a (lower semi) continuous function on
an appropriate function space (space of curves, in the older
terminology of Volterra). Leaving the metric case, ‘Goffman
turns to Banach and Hilbert spaces and discusses the role of
normed algebras, proving in particular the Gelfand theorem on
normed fields, and concluding with the algebraic proof of the
theorem by Wiener on absolutely convergent Fourier series.

These articles are not intended as texts; they have more
the role of commentaries, of annotated guide books to the
mathematical literature. They do not attempt to bring one up
to the level of current research. Their aim is preparatory, to
pave the way for the more complete story that is yet to come.

They were not written for the expert; perhaps for this reason,
experts will enjoy them.



A THEORY OF LIMITS
E. J. McShane

1. INTRODUCTION

One of the distinctive features of twentieth-century mathe-
matics is its seeking for unification and generality. When two or
more mathematical theories show strong resemblances, it is

-almost a conditioned reflex for the modern mathematician to
look for the underlying common properties that cause the simi-
larities and to construct a general theory on the basis of those
common properties. The theory of limits is a good example.
During the nineteenth century many limit processes were de-
fined that led to similar theorems. In 1922 E. H. Moore and
H. L. Smith{ published a general theory containing the earlier
theories as special cases. The fundamental theorems on limits,

t E. H. Moore and H. L. Smith, “A general theory of limits,”’ American
Journal of Mathematics, vol. 44, 1922, p. 102, The same theory was devised
independently by M. Picone (‘“Lezioni di analisi infinitesimale,’”” Circolo
matematico di Catania, 1923).
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8 E. J. McShane

once proved in the general setting, could be used in all the
special cases without having to be proved over and over.

In this section we shall investigate a general theory of limits
that is a modification of the Moore-Smith theory; I believe that
the modifications make it somewhat easier to grasp and to use.

2. NOTATION

We shall use the idea of sets and a few of the simplest rela-
tions between sets; in faet, the only symbols from set theory
that we shall use are A C B (‘A is contained in B”’), meaning
that each member of A belongs to B; A N B (“the intersection
of A and B”’), meaning the set of all things that are members of
A and also are members of B; and A \U B (“the union of 4 and
B’"), meaning the set of all things belonging to A, or to B, or
to both of them. Our chief interest will be in real-valued func-
tions. But since infinite limits are too useful to reject, we aug-
ment the real number system R by adjoining two new objects,
+ « and — =, and we order them by setting — » < e < « for
all real a. The augmented system we call the extended real
number system, and we denote it by R*. Since we are going to
allow limits in B*, we may as well allow functional values in B*
too.

If @ and b are in R* and a < b, we define the open interval
(a, b) to be the set of all z in B* such that ¢ < z < b. Likewise,
we define the half-open intervals (a, b] and [a, b) to be the sets of
all z in R* satisfying the condition ¢ <z £ b or a =2 <b,
respectively. Also, if @ < b, the closed interval [a,b] is the set
of all zin R* such that @ < z = b. (The square bracket next to
the name of either end-point indicates that the end-point is
included; the round parenthesis indicates that it is not included.)

The concept of open inferval is useful also in n-dimensional
space R™. A set J in the plane R? is an open interval if there exist
four real numbers a, b, ¢, d such that ¢ < b, ¢ < d, and J is the
set of all points (z,y) satisfying e <z < b, ¢ <y <d. The
extension to higher dimensions is obvious.

The netghborhoods of a point P in n-space R* are by definition
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the open intervals that contain P. This takes care of R!, or
R, in particular, but not of R*, since no open interval contains
+ o or —. In B* a set V is a neighborhood of a point b if
(1) b belongs to V, and (2) V is either an open interval, a ‘“half-
line” (¢, + ] or [— =, ¢), or the whole extended real-number
system R* = [— «, «].

3. THE DEFINITION OF LIMIT

Let us look at two familiar definitions.

(1) If f 7s defined for all real numbers, and a is real and k is in R*,
then the statement

lim f(z) = k

means that to every neighborhood U of k there corresponds a neighbor-
hood V of a such that whenever z is in V and x # a, f(z) is in U.

(2) If f is defined on a square S in the plane, and P: (z0, Yo) belongs
to 8, and k is in R*, the statement
lim  fz,y) =k
(2.9)— (zo,y0)
means that to every neighborhood U of k there corresponds a neighbor-

hood V of P such that whenever (z, y) is a point of S lying in V and
different from P, then f(z, y) 1s in U.

It is easy indeed to make these look alike. First, we let D be
the domain of f; in (1), D is the real-number system R, and in
(2) it is 8. Next, each member of D will be denoted by some
single letter, such as p. In (1) we mentioned a certain family of
sets, each consisting of all the points of a neighborhood V of a
except for a itself; in symbols, V — {a}. (Such a set is often
called a deleted neighborhood of a.) Let us use the letter U to
stand for this family of sets. In (2) we used the sets of points of
S belonging to V and different from P, where V is any neighbor-
hood of P. For this example we let % stand for the family of all
such sets; that is, % consists of all sets of the form V N\ § — { P},
V a neighborhood of P. Now both definitions take the same form :
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(3) limf(p) = k means that to each neighborhood U of k there
corresponds a set A of the family U such that for all p in A, f(p) 4s
in U.

A standard definition of the limit of a sequence by, by, bs, * - -
is the following:

(4) The sequence by, bs, by, - - + of real numbers has k (in R*) as
limit if for each neighborhood U of k, b, ts in U for all but finitely
many values of n. '

This looks a bit less like (3). But if we let D stand for the set
of positive integers, and for each positive integer p we define
f(p) to be another notation for a,, and then define % to be the
family of all sets A each of which consists of all but finitely
many of the positive integers, (4) also takes on the same form (3).

We could add other examples, but we already have enough to
suggest a possible general definition of limit, as follows:

(5) Let f be an extended-real-valued function with domain Dy, and
let A be any family of sets each contained in Dy;. Let k be in R*.
Then the statement that f(x) has k as limit (corresponding to family
%) shall mean that whenever U is a neighborhood of k, there is a sel

U in the family N such that for every x in A, f(x) is in the neighbor-
hood U of k.

The trouble now is that this definition of limit has such splendid
generality that we are unable to prove any interesting theorems.
Since we prefer to be able to prove some theorems, we put restric-
tions on the family ¥%; of course, we try to use as few restrictions
as possible. We shall in fact assume that the family % in (5) has
three properties, as follows:

(6) 1. U is not empty; it contains at least one set A

2. Each set A in the family U is nonempty; it contains at least
one point of Dy.

3. If A, and A, are sets belonging to the family ¥, there is a
set A of the family A contained in both A, and Ay,

A; CAIN A,
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In our three examples these are easily verified; in fact, in both
cases the family ¥ consists of infinitely many sets each with
infinitely many members, and whenever A, and 4, are in ¥ so
is their intersection 4, /M A,. So these requirements are not ex-
orbitantly strong. In fact, they are satisfied for all the classical
examples, and in the last section we shall see that they cannot be
weakened in any respect without allowing the possibility of
undesirably weird examples. On the other hand, they are strong
enough, because they allow us to prove all the traditional theo-
rems on operations with limits.

Since we shall be repeatedly using families 9 with properties
1, 2, and 3, it is convenient to introduce some names. A family
of sets satisfying 1, 2, and 3 will be called a direction; if all the
sets A in the family % are contained in a set D, ¥ is a direction
in D. A directed function is a pair consisting of (a) a function f;
(b) a direction in the domain of the function. Also, if ¥ is a
direction, each set A of the family ¥ will be called an advanced
set.}

Now we can state our general definition of limit for extended-
real-valued functions.

(7) Let f be an extended-real-valued function; let A be a direction
in the domasn of f; and let k be in R*. The stalement that the
directed function (f, ¥) has k as lmit (in symbols, hm f(x) = k)

18 defined to mean that to each neighborhood U of k there carresponds
a set A in the family N such that for all x in A, f(x) ts in U.

SoME FUNDAMENTAL THEOREMS. The first three theorems that

we shall prove make no use of the computational properties of
the number system.

(8). Let f and g be extended-real-valued functions on the respective
domains Dy and D,, and let A be a direction all of whose sets are
contained both in Dy and in D,. Assume that there is a number k in
R* such that li?;z, f(x) = k. If there exists a set A in U such that

t See footnote on page 13.
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g(z) = f(z) for all z in A, then
ligz g(z) = k.

Proof: Let U be any neighborhood of k. By (7) there is a set
Aqin ¥ such that f(z) isin U for all z in A. By property 1 of (6),
there is a set A, in ¥ contained in both' A and A;. Then for all
z in Ag, f(z) is in U and g(z) = f(x), so g(x) is in U.

We now prove the important uniqueness theorem, that is,
that no directed function can have more than one limit.

(9) Let (f, ) be a directed function, f being extended-real-valued.
If h and k are in R*, and h # k, and (f, A) has k as limit, then
(f, A) does not have h as limit.

Proof: Let ¢ be a number between h and k. Then % is in one
of the two sets [— =, ¢), (¢, «]; this one we call Uy, and it is a
neighborhood of k. The other we call U,, and it is a neighbor-
hood of h. Suppose that (f, ¥) had both h and k as limits.
Since U, is a neighborhood of k,, there is an A, in ¥ such that for
all zin A, f(z) is in UL Since U, is a neighborhood of h, there
is an A, in % such that for all x in A., f(z) is in U,. By property
3 of (6) there is a set A3 in ¥ contained in both 4, and A,; and
by property 2 of (6) there is something, say z*, in As. Then z* is
" in both A, and As, so f(z*) is in both U; and U, But this is
impossible; U, and U, have no points in common.

(10) If (f, A) is a directed function and k is in B* and f(x) = k
for all z in the domain of f, then

lim f(x) = k.
X1

Proof: Let U be any neighborhood of k. Let A, be any member
of the family %; such an A, exists by property 1 of (6). For all
zin 4., f(z) = k, so f(z) is in U.

4. A USEFUL VERBAL DEVICE

By a verbal device due to Halmos we can word the definitions
and proofs so that the language helps to draw us along the cor-



