s

BEERKEB (CIP) BiE
R R 45 4= Software Architecture / B4, &Y

FEo FOHFE. — UM BTTLR 2) A 2008.3
ISBN 978-7-308-05453-9

I3 1.O%--QHf--QF - I BM-RKLEW
IV.TP311.5

rh [B4 B B0 CIP BB BT (2007) 25 169644 5

RHEEREH
FiE AREIE A K

REHRE LBL M &

HEEIT oL K% R

F 4k ; http //'www zjupress.com

Springer- Verlag GmbH

A 4t : http://www.springer.com

H L1 Rt s R HE RO L
HEHRNEAERARA A

787mmX 960mm 1/16

20

719 F

20084 3 HAE 1AL 2008 4 3 A% 1 EPRI
ISBN 978-7-308-05453-9 (Hff /L K 2 Hi ig 3t)
ISBN 978-3-540-74342-2 (Springer-Verlag GmbH)
120.00 7¢

Ep

*F N IO
do S5 R B EH

it
=

MAETA MO wR EREH fAHEAR
WL K 44 RSURE: 52 B K I H 3 (0571)88072522

Preface

Building software nowadays is far more difficult than it can be done several decades
ago. At that time, software engineers focused on how to manipulate the computer to
work and then solve problems correctly. The organization of data and implementation
of algorithm were the crucial process of software designing then. However, more and
more tasks in low level, such as memory management and network communication,
have been automatized or at least can be reused with little effort and cost. Program-
mers and designers, with the help of high level programming languages and wieldy
development tools, can pay more attention to problems, rather than bury themselves
into the machine code manuals. However, the side effect of these utilities is that more
complicated problems are given according to the requirements from military, enter-
prise and so on, in which the complexity grows rapidly day by day. We believe that
software architecture is a key to deal with it,

Many people become aware of the existence of software architecture just recently.
Nevertheless, it in fact has a long history, which may surprise you. Before the inven-
tion of C++ or even C, some computer scientists had begun to notice the concept of
software structure and its influence to software development. In the 1990s, software
architecture started its journey of bloom, when several communities, workshops and
conferences were hold with a great amount of published articles, books and tools. To-
day, software architect, the job of taking software designing, analysis and dealing
with different concerns and requirements from different stakeholders, is considered as
the center of development team.

But there is an ironical problem that most existing architects in fact do not take
any study or training in this field, some of whom even do not realize that software ar-
chitecture is a kind of realm requiring academic effort, just as artificial intelligence or
data mining. The reason is that software architecture has no widely-accepted defini-
tions and standards of basic theories and practical methods, which leads to that there
are almost no universal course about this subject, Meanwhile, the rapid growth and
division of software architecture result in too many branches and sub-fields, most of
which still keep non-dominant and unified. These changes aggregate the trouble in
learning even a subset of software architecture area. In this book, we will provide an

W Software Architecture

overview among the classic theories and some latest progresses of software architec-
ture and try to touch the software architecture’s essence.

This book is a collaboration of three authors: Zheng Qin, Jiankuan Xing and
Xiang Zheng. More particularly, Professor Qin is the primary author who decides the
contents and issues what you can see in this book, And Jiankuan Xing organizes the
work of writing, and facilitates the cooperation with authors and other contributers.

Targets

This book aims to give an introduction to the theory foundations, various sub-fields,
current research status and practical methods of software architecture. In this book,
readers can acquire the basic knowledge of software architecture, including why soft-
ware architecture is necessary, how we can describe a system’s architecture by formal
language, what architecture styles are popular for practice use and how we can apply
software architecture into the development of systems. Study cases, data, illustra-
tions and other materials which are released in the recent years will be used 1o show
the latest development of software architecture. This book can be used as the learning

material for touching software architecture.

How to Read This Baok

We target to give readers an inside-out understanding of software architecture, there-
fore this book is divided into two parts (not shown explicitly in content) :

® Basic Theories; Chapter 1—Chapter 5

e Advance Topics : Chapter 6-—Chapter 9

In detail, we give the overview descriptions for each chapter as follows.

Chapter 1. Introduction. The theme of this chapter is the basic introduction to
software architecture, where readers will see why we need it, how it emerged and
what its definitions look like. We hope to give readers a clear vision on it, considering
a great many misunderstanding and arguments’ presence. In addition, with the devel-
opment of research, concerns and usage of software architecture have become differ-
ent, which we will mention at the last section of this chapter.

Chapter 2: Architectural Styles and Patterns., Initially, the research on software
architecture emphasized the categorization of software in architectural level. Some
systems share the common structure and properties are classified into one set in which
the same vocabulary and similar models for representing these systems can be used.
Each vocabulary and models specified for a category is called “architectural style”.
What’s more, we abstract and represent some representative structure and reuse
them with style. Each structure is called an “architectural pattern”. Architecture
styles and patterns are very precise utilities for constructing complex systems. In
Chapter 2, we provide descriptions, study cases and comparison of them.

Chapter 3: Application and Analysis of Architectural Styles. After characterizing
several popular styles, we continue to offer a few study cases, each of which com-

Preface Vi

bines more than one architectural style, Academically, this is called “heterogeneous
style constructing”. As a matter of fact, applied software always uses multiple styles
simultaneously, no matter how simple they are. The goal of this chapter is to tie the
abstract styles to practice use.

Chapter 4. Software Architecture Description, How to describe software architec-
ture is the centric subject of architecture realm, because it is the foundation to repre-
sent software’ s design, perform effective communications among stakeholders and
measure systems’ behaviors according to requirements. In this chapter, we pay at-
tention to architectural formal description, which stands on the mathematic basis.
However, for UML, the language widely used as architecture representation in prac-
tice, you can find excessive materials about it.

Chapter 5; Design Strategies in Architecture Level, This chapter gives you a chance
to touch the concept of architectural design with formal foundation. In contrast to
practical software development processes, such as RUP (Rational Unified Process) ,
formal architectural design strategies stress the relationship and calculus of function
space and structure space, both of which abstract the development process performed
in the real world. To get through with this chapter, a fair capability of set theory and
automata theory is required.

Chapter 6. Software Architecture IDE, Although software architecture is useful for
software development, using it with pure handwork incurs too much overhead, and
then time and cost, to the development process, which may obliterate its benefits,
That’s the key why software architecture was not popularly accepted in the 1990s,
Now, we have the handy assist, software architecture IDE. The purpose of IDE is to
enable an organization to manage its software architecture and other related actions
and processes in a way that meets business needs by providing a foundational utility
upon which design, communication, framework code generation and validation can be
carried out automatically.

Chapter 7: Evaluating Software Architecture. After the initial architectural design
is finished, any stakeholder would finger out whether this design is gooi:l or not,
whether it will contribute to a successful development and then output the satisfying
production or doom to crush resulting from the design defects, That’ s the
evaluation’s task. In this chapter, currently widely-used evaluation methods are dis-
cussed and compared, However, evaluation methods still lack the formal foundation,
and more focus on the experience and capability of participators. Therefore, the de-
scription here will bring you the practical architectural methods and technologies,
based on which evaluation is performed.

Chapter 8. Flexible Software Architecture, Flexible software architecture means
the structure of a system which can metamorphose during runtime according to users’
instructions, executing environment’s changes or other requirements and the related
actions and processes. That’s crucial for systems’ needs of self-healing and self-
adaptation abilities. The systems with these needs before normally mix the structure
metamorphosis code and application code, which insults more trouble in maintaining
and improving procedures. What’s more, failing to divide this confusion causes the

Vi Software Architecture

system as conceived and the system as built to diverge over time. In this chapter, we
give an introduction to what flexible software in architecture level looks like and what
the principles and organization patterns of constructing it are.

Chapter 9: A Vision on Software Architecture, This is a chapter far away from the-
oriess methods and technologies, in which the applications of software architecture in
current software industry and in other fields, such as medicine, electronic engineering
and military are presented in general. After that, we will provide several future re-
search directions of software architecture at the end of this book.

Considering the relative independence of each chapter, readers can choose several
chapters they are interested in. But we recommend Chapter 1 should be read carefully
since it can help you understand other chapters easier and better. In addition, you can
find more detail and deeper description about some topics through the reference mate-

rials we give,
Who Should Read This Book

The graduates and undergraduates whose majors are elated to software design and de-
velopment will benefit much from this book. Also, other people who are interested in
software architecture would be guided to this field by reading this book. Then, expe-
rienced software designers and project leaders who want to adopt architecture as the
centric concerns and utility of their software development process are our target read-
ers, 100, But they may suffer pain for a moment when converting their original mind
to the new world, from which they will at last benefit. We assume our readers should
have simple experience as follows, (Each capability may only be involved in several
chapters rather than the whole book)

o Programming using C+ -+, Java or C#

o Software design (even a simple project would be fine)

e Software project management

Acknowledgements

It is a great pleasure to acknowledge the profound and original work of Software
Architecture Group of Tsinghua Univ. , especially Jiankuan Xing (Chapters 1,
5y 7, 8) and Xiang Zheng (Chapters 3, 4). Their insights, collaboration and
diligence have been a constant source which gestates the publication of this
book.,

For the current years I have been considering the problems of software archi-
tecture. During the book”s writing, we have profited greatly by collaboration
with many people, including Kaimo Hu, who prepares lots of materials for
Chapters 2 and 9. Meanwhile, he often inspired us with wide knowledge and
ideas; and Juan Wang who buried herself into various software architecture IDEs
and taught us how to use them in a great detail, which contributed much for
Chapter 6. She is also participating the XArch project focusing on ADL parsing

Preface IX

and model generating. And many thanks to Hui Cao, a nice reader who has in-
spected most manuscript and offered valuable criticisms and comments,

Beijing Zheng Qin
June 2007

Contents

1

Introduction to Software Architecture ..
1.1 A Brief History of Software Development

1.1.1 The Evolution of Prograrmmming Language— Abstract Level

1.1.2 The Evolution of Software Development—Concerng ««-«ss oreereeensens
1.1.3 The Origin and Growth of Software Architecture «-r-vcoererieiaa.,
1.2 Introduction to Software Architecture -

1.2.1 Basic Terminologies .
1.2.2 Understanding IEEE 1471—2000 .
1.2.3 Views Used in Software Architecture
1.2.4 Why We Need Software Architecture
1.2.5

1.3 Summary
References

Architectural Styles and Patterns ««+«+«-coe o verainen
2,1 Fundamentals of Architectural Styles and Patterns
2.2 Pipes Filters SEILRY

2.2.1 Style Description

2.2.2 Study Case
2.3 Object-oriented
.1 Style Description
.2 Study Case
2.4 Event-driven

2.4.1 Style Description
2.4.2 Study Case
2.5 Hierarchical Layer -

.1 Style Description
.2 Study Case

2.6 Data Sharing

2.6.1 Style Description
2.6.2 Study Case

! & bo
e W W

oD o
[S2 0y}

2.7 ViIrtual MACHINE -« cevverreeontortnte tesen et ane caransars srrarnsreersenssnsrosses

- 14
e . 24
Where Is Software Architecture in Software Llfe Lycle
- 32

O O W DN =

29

. 34
- 34
- 38
- 38
- 39
- 42
- 42
- 43
.. 51
- 51
<. 55
)
- 2
+ 64
70
- 70
v 79

75

X Software Architecture

2.7.1 Style Description

7.2 Study Case

2.8 Feedback L.oop

2. 8. Style Description

2.8. 2 Study Case

2.9 Comparison among Styles

>

2.10 Integration of Heterogeneous Styles P T
- 87

2.11 Summary
References

3 Application and Analysis of Architectural Styles
e . 88

3.1 Introduction to SMCSP

Program Background ==« ««««essessessresesonirsaenis it e
.- 90
- 92

3.1.1
3.1.2 Technical Routes
3.1.3 Function Design

3.2 System Realization ««---reereeeesesssennesanesntinsimn ittt
.. 9§
- 101
- 104

3.2.1 The Pattern Choice

3.2.2 Interaction Mechanism

3.2.3 Realization of Mobile Collaboration
3.2.

3.3 Summary

2 g PP

4 Software Architecture DeSCIIPLON -« ------ - -rssrsrrraunirsseninsiieis s
4.1 Formal Description of Software Architecture

.1.1 Problems in Informal Description
1

e o

.1 Introduction to ADL .
.2 Comparing among Typical ADLs

CON NS
SRS

4.3 Study Case: WRIGHT System

.2 Description of Configuration

NN NN SO
W o Ly W

Design Purpose

FEAIL Mapper

r&>nl>~r5>4>»¢>~
»-wa»b»#»#-
U W N

4, 5 Qmrnmary

4 Knowledgebased Deslgn e sea bseacac acs ess sna ams st ass an BN ERT boe b0
- 115

.2 Why Are Formal Methods NeCessary «+«reereerrerererisienieninace,
4.2 Architectural Description Language fee e ees enbeneare aseaener e aaee e e
.- 122
- 127
.3 Describing Architectural Behaviors - e seeereseecer i,
- 134
- 135
- 140

.1 Description of Component and Connector

.3 Description of Style «+«ererrere et
.4 CSP—Semantic Basis of Formal Behavior Description
4.4 FEAL: An Infrastructure to Construct ADLs ««--cccereerercarenserenennes
FEAL SEIUCHULE +++ v+ cerverreessesrenrearsansenssrsonsornrssansnenreanssus
. 163
Examples of FEAL Apphcatlon

- 75
- 77
-+ 81
- 81
.. 82
- 82

84

88

88

96

111

115

116

—v 116
- 116

119
122

133

143

- 145

160

160
162

164

166

5

Contents

X

Design Strategies in Architecture Level ------. < 169
5.1 From Reuse to Architecture Design R YT PR T PP R RTTa W4(]
5.2 Architectural Design Space and Rules -«ceoveeercenians - 171
5.3 SADPBA : 172

5.3.1 (OVErview terreeterverrnnrsurionsoneoneeesnss . 173

5.3.2 Split Design Process with Deﬂ‘.lgn Space L LETERT TR TPRPRRYPIN ikt

5.3.3 Trace Mechanism in SADPBA .- -+ 176

5.3.4 Life Cycle Model of Software Architecture - 176

5.3.5 SADPBA in Practice e 178
5.4 Study Case: MEECS - 180

5.4.1 Introduction to MEECS e e e e e 180

5.4.2 Applying SADPBA in MEECS t+cerevreretsermuinereesiiniinneneennsn, 182
5.5 Summary e ere e ceeevnes 190
References - + 190

Software Architecture IDE . - 191
6.1 What Can Software Archltecture 1IDE Do ceneee - 191

6.1.1 A Comparison with Formalized Description Approach - 191

6.1.2 Important Roles of Architecture IDE -¢ceevseavineannn. <192
6.2 Prototype «ererees . 195

6.2.1 User Interface Layer - 195

6.2.2 Model Layer - 197

6.2.3 Foundational Layer - - 199

6.2.4 IDE Design Tactics -« - 199
6.3 ArchStudio 4 Sy‘;tem - 200

6.3.1 Introduction - AR IR LR - 200

6.3.2 Installing ArchStudio 4 - 204

6.3.3 ArchStudio 4 Overview e e e e e een 206

6.3.4 Using ArchStudio 4 «++erverremriinimiiiiiiiiii i cee e cee e eeneeen 214
6.4 Summary e e e e e e s . . 220
RefErences «++ vt rerreeertiitmie it i st e s e e een e e e 29]

Evaluating Software Architecture - 222
7.1 What Is Software Architecture Evaluation - 222

7.1.1 Quality Attribute - 222

7.1.2 Why Is Evaluation Necessary «:«ssseeeeeureniene -+ 225

7.1.3 Scenaric-based Evaluation Methods - 226
7.2 SAAM rrrvvennvinns . 2929

7.2.1 General Steps of SAAM - . - 229

7.2.2 Scenario Development «+-=tvevrene - 231

7.2.3 Architecture Description -«-+ - 231

7.2.4 Scenario Classification and Prioritization =+« =+ s+« +++srs vererrrerirviennns 239

7.2.5 Individual Evaluation of Indirect Scenarios +««s=««ssseuervrseenrennians 233

7.2.6 Assessment of Scenario Interaction - - 234

7.2.7 Creation of Overall Evaluation - 234

W

Software Architecture

7.3 ATAM - 235
7.3.1 Initial ATAM . 9236
7.3.2 ATAM ©mprovement «--sseeseeesresrmsnsasesnscesss . 238
7.3.3 General Process of ATAM - 239
7.3.4 Presentation - 241
7.3.5 Investigation and Analy51s s 242
7.3.6 Testing - 245
7.3.7 Present the Results «-++:++ - 246
7.4 Comparison among Evaluation Methods cere 246
7.4.1 Comparison Framework «e:e: e s 247
7.4.2 Overview and Comparison of Evaluation Methods =+« - 250
7.5 Summary - 269
References - - 271
8 Flexible Software Architecture - 275
8.1 What Is Flexibility for ««-:- - 275
8.2 Dynamic Software Architecture - 277
8.2.1 mADL: A Behavior Perspective «=++++-+- - 279
8.2.2 MARMOL: A Reflection Perspective - 285
8.2.3 LIME.: A Coordination Perspective - 292
8.3 Flexibility: Beyond the Dynamism - 299
8.3.1 Concept of Flexible Software Architecture ««--+-«srererersececacenenaene 299
8.3.2 Trade-off of Flex1b111ty - - 301
8.4 Study Cases *srsersee cemerieiiesiiiiiiiis e eeees 304
8. 4.1 RADDOW wrevrsresvervrnnmmarsernmtaieieecaniiiiaeasssessnnnssessennennesses 304
8.5 Summary - 308
o O 10 1
9 A Vision on Software Architecture - 313
9.1 Software Architecture in Modern Software Industry - 313
9.1.1 Categorizing SOftware +++«++ssssssrsvrrsmnumesinnueininsenienn e 313
9.1.2 Software Product Line B S T
9.2 Software Architecture Used in Other Fields - 326
9.2.1 The Outline of Software Architecture Application Practice 326
9.2.2 The Development Trends of Domain-Specific Software --+«+-+-:+---+- 326
9.3 Software Architecture’s Future Research — «oceterercereiennnnns - 331
9.4 Summary - 333
References «retet esmee et tersiauiiuniviiiiiisiuiinesioniiiesctestisaressssssassoineneses 333

Index

- 335

1

Introduction to Software Architecture

Compared to the traditional software several decades ago which were simple ma-
chine instructions or the combination of data structures and algorithms, current
software are more complicated and harder to control and maintain. Normally,
software systems are constructed through the assembly of components, whatever
those which are developed according to new specifications or those which are
stored in the libraries. In this circumstance, a team is needed to face different
facets of the system. Some of them deal with the necessary functions to be im-
plemented or reused in components, while others have to focus on how the work
from different divisions can be coordinated and communicated correctly. Mean-
while, in this process some qualities of software must be guaranteed in order to
approach the success.

Software architecture is a rising subject of software engineering to help people
solve problems mentioned above, With it, designers or project managers have
the chance to oversee the status of software in a high level. In addition, software
architecture can be reused, resulting in the saving of huge cost and the reduction
of risks within the development processes and the activities after them, including
designing, modeling, implementation, test, evaluation, maintaining and evolu-
tion,

However, tracking software architecture is difficult, because it always hides
itself behind what you can touch. Visualizing it requires a deep grasp of global
information of systems as well as excellent skills and methods, People from dif-
ferent organizations or enterprises use different strategies to handle it, but most
of them have something in common. Abstract and summary of these experiences
have become the foundation of software architecture science today.

In this chapter, we start from the history of software development, trying to
uncover the origin of software architecture. Then we discuss the definitions and
meanings of architecture and other related activities. At last, we focus on what
benefits we will gain from it.

1.1 A Brief History of Software Development

Revolutions in software development paradigm are not singular since the word

2 Software Architecture
“software” was approximately born in the 1940s when the initial stored-program
computers emerged. Each shift, along with development methodologies, pat-
terns and tools, occurred to meet new environment and requirements. We be-
lieve that software architecture is the next revolution. Many people have begun
to follow this trend, while, however, many others do not care about it, just as
several years ago the people who were reluctant to change their habits and use
new development technologies. Upon history level, we can get more clear sight
of how software architecture gradually becomes crucial for current software
industry and why we should change our manner of work to follow it.

1.1.1 The Evolution of Programming Language—Abstract Level

Abstract is the process that simplifies the real systems, activities or other enti-
ties by ignoring or factoring out those trivial details without missing their essen-
tial running mechanisms. To construct a solution with a computer, we abstract
it and implement it with programming language, in which the target model of
abstract greatly affects what programmers see that problem. The progress of
programming languages so far regularly increases their abstract level, transfor-
ming the emphases on from machine manipulating to problem solving.

In the 19505, stored-program computers became popular and thereby monop-
olized programmers’ work manner at that time. Programmers used machine
instructions which can be executed directly by their computers and data with
naive categories such as byte, word, double word to express their logic. The
layout of instructions and data in memory had to be controlled by hand, that is,
programmers must keep in mind where the beginning and end positions of each
constant and variable exactly are. When the program needed update, program-
mers spent a lot of time to check and modify every reference for data or code po-
sition that needs a movement to keep program’s consistency.

Soon, some people were aware of that these functions could be automated and
reused. Therefore, symbolic substitution and subroutine technology were crea-
ted. The great thing about these was that they liberated you from those trivial
but important works for the machine. However, commonly useful patterns,
such as conditional control structure, loop structure, evaluation of numeric com-
putation expressions, still had to be decomposed to simple control and computa-
tion instructions that machine was able to carry out, which drew programmers’
much attention to the computation’s realization rather than the problem itself,
This improved the high-level programming. In the middle of the 1960s, FOR-
TRAN from IBM became the dominant programming language in scientific com-
putation for its convenience and high-efficiency.

In the latter part of 1960s, Ole-Johan Dahl and Kristen Nygaard created Sim-
ula, a superset programming language of Algol, introducing the object-oriented
paradigm. The data type in FORTRAN serves to construct a map between FOR-
TRAN types to machine primitive data types. On the contrary, object-oriented
paradigm considers data type as the abstraction of entities from real problems,
Although FORTRAN and C also have the utility such as “structure” and
“union”, they are just the accumulation of data in that data type and operations

1 Introduction to Software Architecture 3

specific to this type are separated, and object-oriented rules, including encapsu-
lation, implementation hiddenness, access control and polymorphism are not
touched, With the growth of C+ +, a widely accepted object-oriented language,
the programming world was thoroughly changed.

The prime goal of C+ + or other contemporary object-oriented languages
was to put class as the basic reuse unit. However, the design and realization
themselves of these languages doomed to fail. On the one hand, absence of class
meta data ruins the promise of the update capability of a class’s implementation;
on the other hand, disregard of the separation between the communication con-
tracts among classes and classes’ implementation limits their capability of reuse.
We can see that majority of reuse performed in C+ 4 stand on source code level,
while reuse in binary level may introduce more problems than its benefits, You
can find more details about this subject in (Joyner, 1996), When people find
that software can be assembled by several independent parts and thus can reduce
the cost and time in building larger system, it is clear that finding a proper reuse
unit or establishing principles for this kind of unit is crucial. (Ning, 1996) gave
the first complete picture of component-based software development model.

Component further raises the design level by increasing the concept size of
building block in software. The great thing about this is that it permits designers
to construct a systemn by using interindependent components, under the premise
of that strict communication contracts are defined and followed. Object-oriented
paradigm is a good basis for component development model, but not each compo-
nent must be implemented by objects. After the middle of the 1990s, COM and
CORBA became popular because they extended C+ + or other languages to meet
component model’ s requirements and principles. Java and .Net platform support
development and deployment in component level since their birth, with the help
of explicit utility of interface and meta information. What’s more, the design
model created by UML can be easily converted to the source code in these two
platforms. UMIL combines concepts, advice and experience of countless design-
ers, software engineers, methodologists and domain experts to provide a suit of
fundamental notations, with which people care only components and the relation-
ships, constraints among them. In other words, UML achieves the peak of
abstract level so far.

We believe software architecture will bring next shift in software develop-
ment paradigm. But just as the relation between high-level programming langua-
ges and UML., software architecture will not exterminate old methods and tools,
but to complement them to deal with large-scale, rapid-changing software inten-
sive systems.

1.1.2 The Evolution of Software Development—Concerns

Along with the evolution of programming language, the focus of software devel-
opment also keeps changing. It is a commonly held belief among software indus-
try that getting victory needs competitive time-to-market while guaranteeing
products’ qualities to meet customers’ requirements. Most of concerns pay
much attention to uncover and annihilate the bottlenecks in the development

4 Software Architecture

processes, which depends on the enhancement of development utilities and tool-
kits.

In the age when machine code or assembly language dominated, the process
of designing was to express problem solution with primitive instructions and da-
ta. Without the help of automation, programmers needed to track codes accord-
ing to their physical memory layout. If anybody did a poor job in organizing their
codes, he ran the risk of making everything a mess and letting update almost im-
possible in which every reference of codes and data needing modified had to be
changed purely by hand. A good design could suppress a resulted tangly program
finally because it tried to clear the programming logic, although in a low level,
Some tactics and methods created by designers became the sprout of architectural
idea improved later on.

The next shift in concern was how to organize codes and data to avoid the dif-
ficulty in reading, tracking, debugging and maintenance, which is now called
structuring. Unstructured program can be considered a whole block of continu-
ous code list, allowing the execution point to jump everywhere you want.
Assembly language is the typical example of constructing that kind of program.
Nevertheless, unlimited use of jump control statement will introduce server con-
sequences, You can find a famous criticism of GOTOQ statement from “Go To
Statement Considered Harmful” (Dijkstra, 1968a). To get structured program,
the entire program is split into smaller procedures whose executions depend on
invoking among each other. By using structured organization strategies, soft-
ware designers began to adopt the top-down paradigm, that is, to decompose the
large-scale software system into smaller modules and perform detailed design
respectively. The relationship among these procedures is simply invocation. One
procedure calls a series of sub procedures, each of which repeats this process un-
til the atomic procedures are reached. The top level procedures can be considered
as the construct parts of the whole system. The design at that time was com-
monly a control flow diagram indicating that how a task was performed step by
step, and guiding how the program was executed in a sequence.

However, structured paradigm does not mirror the real world very well and
thereby easily bring traps and pitfalls. Designers still need convert the problem
model to structured model and decompose it into modules, which is not thus nat-
ural. Continuingly, code reuse will not be carried out easily because to reuse a
procedure, one must take a series of related data structure, which always not be
implemented in a single artifact.! Therefore, the data-centric organization be-
came a new attracting trend within which action belongs to entity, rather than
the vice versa just as what we can see in the structured paradigm. More and
more designers preferred to package data type and its proprietary operations in
order to provide the basic construction and reuse unit. Object-oriented (O0) lan-
guages support this paradigm explicitly and extend it greatly with derivation and
polymorphism capabilities. Since the middle of 1980s, modeling entities and their

I Artifact means the physical entity where implementation or information is placed. such
as an executive file, a library or a database table.

1 Introduction to Software Architecture 5

relationships in the problems have turned to the new design methodology. Soft-
ware designers can directly use vocabulary in the problem space by thinking of
their system’s structures.

However, unfortunately, OO paradigm is not panacea. For example, pure
OO cannot meet needs that concepts cross with each other. For example, the in-
stance .of class *Customer” and that of “Transaction” in a business system may
couple tightly, resulting in that the modification of one class forces modification
of another. If more new classes have to cross existed ones, taking class “Log”
for example, boring update work that is commonly considered disappeared comes
back. Recent Aspect-Oriented Programming (AQP) tries to remedy this prob-
lem. In AOP, designers divided entities into two categories: independent ones
(such as “Customer”) and crossing ones (Such as “Transaction” or “log”). By
just indicating cross points and controlling the cross styles, AOP interpreter
helps deal with the cross work. In my opinion, AQOP is a good complement of
00, but still stands in the same level with it.

Upon a higher level, object-orientation itself cannot solve the problem of
complex interaction among objects. Unlike software decades ago, software sys-
tems increase their complexity drastically according to their execution styles,
which are transforming from stand-alone to cooperation. Therefore, methods
and technologies of interaction and data exchange draw much attention. Some in-
teraction paradigms, including invocation, point-to-point message transmission,
publish-subscribe, are getting their popularity when they are used in all kinds of
implemented communication protocols. From the almost all large-scale systems
we can see that software behaviors can be split into two categories: computation-
al behaviors, which handle business computation and architectural behaviors,
which focus on the integration of system. Whether structured or OO paradigm
does not support this separation explicitly since their concerns. Although OO
gives people a great building block in design time, it is reluctant to express the
runtime structure clearly. (For instance, the runtime structure of C+ + pro-
grams is identical to that of C program while Java and .Net platform only store
simple meta-information in execution,) In addition, “interface” implemented by
00 is too naive in that it only regulates methods’ signatures but ignoring a rich
amount of other items of contracts, such as a method’s performance or its mem-
ory usage. Interface in the design world has a more generic meaning to handle
semantic-understanding and manipulation of a service which is referred by that
interface. All in all, to get these interaction mechanisms, we have to construct
them by ourselves and we need something to express them.

Another important concern in this level is how to evaluate the influence of
systems’ structure to their qualities. Functionality comes from the computation-
al modules we implement, while others, such as availability, usability, and test-
ability, are attached to system’s runtime structure. You can imagine that we
create a redundant copy of crucial data in order to achieve performance or we In-
terweave the encryption function with computational components to keep securi-
ty. Simply speaking, functionality is mostly decided by customers’ require-
ments, while non-functional qualities are the result of how a system is organized

[Software Architecture

in its runtime. What’s more, after getting a structure that has several benefits
to current domain, how can we record, adjust and reuse it? Domain-suitable ar-
chitecture is crucial for the survival of any software manufacturer because it is
the basis to apply software product line construction, which produces software
by slightly modifying domain architecture according to requirements and imple-
menting mainly through assembly. Essentially, it drastically reduces the cost
and time-to-market.

When we place our concerns to points mentioned above, we find that a foun-
dation, for designing, recording, evaluating and reusing is extremely required.
And we believe that software architecture is the solution.

1.1.3 The Origin and Growth of Software Architecture

The well-defined software architecture began its life in the 1990s, as most people
believe. However, its origin can be traced back to the late of 1960s, when soft-
ware crisis dragged public’ s attention. At that time, the success of software
started to dominate the success of the whole system because, compared to hard-
ware, system designers had more {reedom in selecting or organizing software
structures. But the process of software development differs greatly from that of
other artifacts. such as a building, a car or a machine in that it is hard to figure
out several clear phases to layout it. Meanwhile, simply increasing programmers
cannot increase the productivity, but rather incur the failure of a project very
easily (Brooks, 1975). Software development is more than just to assembly a
bunch of parts. Rather, behind the entire process stand extreme complex rela-
tionships, which are not yet uncovered today. In the 1968, NATO software en-
gineering conference was held in Germany, starting software engineering as a
well-accepted scientific discipline, which aimed to solve the problemsn mentioned
above.

The first record touching the concept of architecture used in software devel-
opment can be found in “The Structure of the ‘ THE !’ Multiprogramming
System” authored by Edsger Dijkstra, which was published in 1968 (Djijkstra,
1968b>. He discussed about how to use layers in construing a large-scale system
and then led to a design with more clear structures and better maintainability. A
deeper understanding of architecture was given by Brooks, who defined it as “the
complete and detailed specification of the user interface” in (Brooks, 1975). In
addition, David Parnas made great contribution in the architecture’s fundamen-
tal. His insight included information hiding and usage of interface (Parnas,
1972), structure separation (Parnas, 1974) and the relationships between soft-
ware structure and its quality (Parnas, 1976), all of which have become the
golden rules of architects and programmers nowadays. You can find a more de-
tailed outline of Parnas’ work at the end of the chapter of So frware Architecture

! THE is an early multitasking, but not multi-user, operating system whose develop-
ment was led by Edsger Dijkstra. In fact, THE is the abbreviation of “Technische Ho-
geschool Eindhoven”, the then-name (in Dutch) of the Eindhoven University of Tech-
nology, the location of this system was developed.

