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PREFACE

This book is designed as a companion to the graduate level physics texts on classical
mechanics, electricity, magnetism, and quantum mechanics. It grows out of a
course given at Columbia University and taken by virtually all first year graduate
students as a fourth basic course, thereby eliminating the need to &over this
‘mathematical material in a piecemeal fashion within the physics courses. The two
volumes into which the book is divided correspond roughly to the two semesters
of the full-year course. The consolidation of the' mathematics needed for graduate
physics into a single course permits a unified treatment applicable to many branches
of physics. At the same time the fragments of mathematical knowledge possesed
by the student can be pulled together and organized in a way that is especially
relevant to physics. The central unifying theme about which this book is organized
is the concept of a vector space. To demonstrate the role of mathematics in physics,
we have included numerous physical applications in the body of the text, as well
as many problems of a physical nature.

Although the book is designed as a textbook to complement the basic physncs
courses, it aims at somethmg more than just equipping the physicist with the
mathematical techniques he needs in courses. The mathematics used in physics
has changed greatly in the last forty years. It is certain to change even more
rapidly during the working lifetime of physicists being educated today. Thus, the
physicist must have an acquaintance with abstract mathematics if he is to keep up'
with his own field as the mathematical language in which it is expressed changes.
It is one of the purposes of this book to introduce the physicist to the language
and the style of mathematics as well as the content of those particular subjects.
which have contemporary relevance in physics.

The book is essentially self-contained, assuming only the standard under-
graduate preparation in physics and mathematics; that is, intermediate mechanics,
electricity and magnetism, introductory quantum mechanics, advanced calculus
and differential equations. The level of mathematical rigor is generally comparable
to that typical of mathematical texts, but not uniformly so. The degree of rigor and
abstraction varies with the subject. The topics treated are of varied subtlety and
mathematical sophistication, and a logical completeness that is illuminating in one
topic would be tedious in another.

While it is certainly true that one does not need to be able to follow the proeL
of Weierstrass’s theorem or the Cauchy—Goursat theorem in order to be able to
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. compute Fourier coefficients or perform residue integrals, we feel that the student
who has studied these proofs will stand a better chance of growing mathematically
after his formal coursework has ended. No reference work, let alone a text, can
cover all the mathematical results that a student will need. What is perhaps possi-
ble, is to generate in the student the confidence that he can find what he needs in
the mathematical literature, and that he can understand it and use it. It is our aim
to treat the limited number of subjects we do treat in enough detail so that after
reading this book physics students will not hesitate to make direct use of the
mathematical literature in their research.

The backbone of the book—the theory of vector spaces—is in Chapters 3,4,
and 5. Our presentation of this material has been greatly influenced by P. R.
Halmos’s text, Finite-Dimensional Vector Spaces. ~A generation of theoretical
physicists has learned its vector space theory from this book. Halmos’s organiza-
tion of the theory of vector spaces has become so second-nature that it is impossible
to acknowledge adequately his influence.

Chapters 1 and 2 are devoted primarily to the mathematics of classxcal physics.
Chapter 1 is designed both as a review of well-known things and as an introduction
of things to come. Vectors are treated in their familiar three-dimensional setting,
while notation and terminology are introduced, preparing the way for subsequent
generalization to abstract vectors in a vector space. In Chapter 2 we detour slightly
;in order, to cover.the mathematics of classical mechanics and develop ‘the varia-
tional concepts which we shall use later. Chapters 3 and 4 cover the theory of finite
dimensional vector spaces and operators in a way that leads, without need for
subsequent revision, to infinite dimensional vector spaces (Hilbert space)—the
mathematical setting of quantum mechanics. Hilbert space, the subject of Chap-
ter 5, also provides a very convenient and unifying framework for the discussion
of many of the special functions of mathematical physics. Chapter 6 on analytic
function theory marks an interlude in which we establish techniques and results
that are required in all branches of mathematical physics. The theme of Vector
spaces is interrupted in this chapter, but the relevance to physics does not diminish.
Then in Chapters 7, 8, and 9 we introduce the student to several of the most im-
portant techniques of theoretical physics—the Green’s function method of solving
differential and partial differential equations and the theory of integral equations.
Finally, in Chapter 10 we give an introduction to-a subject of ever mcreasmg im-
portance in physics—the theory of groups.

A special effort has been made to make the problems a useful adjunct to the
text. We believe that only through a concerted attack on interesting problems can
a student really “learn” any subject, so we have tried to provide a large selection-of
problems at the end of each chapter, some illustrating or extending mathematical
points, others stressing physical applications of techniques developed in the text. .
In the later chapters of the book, some rather significant results are left as problems
or even as a programmed series of problems, on the theory that as the student de-
velops confidence and sophistication in the early chapters he will be able with a
few hints, to obtain some nontrivial tesults for himself. :
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The text may easily be adapted for a one-semester course at the graduate (or
advanced undergraduate) level by omitting certain chapters of the instructor’s
choosing. For example, a one-semester course could be based on Volume 1.
Another possibility, and one essentially used by one of the authors at the Uni-
versity of California at Berkeley, is to give a semester course based on the material
in Chapters 3, 4, 5, and 10. On the other hand, a one-semester course in advanced
mathematical methods in physics could be constructed from Volume II.

Certain sections within a chapter which are difficult and inessential to most of
the rest of the book are marked with an asterisk.

In writing.a book of this kind one’s debts proliferate in all directions. In addi-
tion to the book of Halmos, we have been influenced by Courant—Hilbert’s treat-
ment of, and T. D. Lee’s lecture hotes on, Hilbert space, Riesz and Nagy’s treat-
ment of integral equations, and M. Hamermesh’s book, Group Theory.

A special debt of gratitude is owed to R. Friedberg whose comments on the
material have been extremely helpful. In particular, the presentation of Sec-
tion 5.10 is based on his lecture notes.

Parts of the manuscript have also been read and taught by Ann L. Fuller, and
her comments have iniproved it greatly. Richard Haglund and Steven Lundeen
read and commented on the manuscript. Their painstaking work has removed
many blemishes, and we thank them most sincerely.

Much of this book appeared in the form of lecture notes at Columbia Uni-
versity. Thanks are owed to the many students there, and elsewhere, who pointed
out errors, or otherwise helped to improve the manuscript. Also, the enthusiasm
of the students studying this material at Berkeley provided important encourage-
ment.

While all the above named people have helped us to improve the manuscript,
we alone are responsible for the errors and inadequacies that remain. We will be
grateful if readers will bring errors to our attention so corrections can be made in
subsequent printings.

One of us (FWB) held an Alfred P. Sloan Fellowship during much of the period
of the writing; he gratefully thanks Professors M. Demeur and C. J. Joachain {or
their hospitality at the Université Libre de Bruxelles. The other author (RWF)
would like to thank R. A. Rosenbaum of Wesleyan University, the University’s
Center for Advanced Studies, and its director, Paul Horgan, for their hospitality
during the course of much of the work. We would also like to thank F. J. Milford
and Battelle Memorial Institute’s Seattle Research Center for providing support
that facilitated the completion of the work.

Many of the practical problems of producing the manuscript were alleviated
by the valued assistance of Rae Figliolina, Cheryl Gruger, Barbara Hollisi, and
Barbara Satton.

Ambherst, Mass. . F.W.B., Jr.
Hartford, Conn. R.W.F. '
January 1969
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CHAPTER 6

ELEMENTS AND APPLICATIONS OF THE
THEORY OF ANALYTIC FUNCTIONS

INTRODUCTION

The role played by the theory of analytic functions in physics has changed
considerably over the past few decades. It no longer suffices to be able to work
out residue integrals; a deeper understanding of the mathematical ideas has
become essential if one wants to follow current applications to physical theory.
Therefore the emphasis here will be on introducing the mathematjcal concepts
and the logical structure of the theory of analytic functions. Assuming only
that the reader is familiar with the properties of complex numbers, we aim to
present a self-contained account of this theory in a way that prepares one to
cope with modern applications of the theory as well as those of the past.

“Imaginary” numbers were discovered in the Middle Ages in the search for
a general solution of quadratic equations. It is clear from the name given them
that they were regarded with suspicion. Gauss, in his doctoral thesis of 1799,
gave the now familiar geometrical representation of complex numbers, and thus
helped to dispel some of the mystery about them. In this century, the trend
has been toward defining complex numbers as abstract symbols subject to certain
formal rules of manipulation. Thus complex numbers never have taken on the
“earthy” qualities of real numbers. In fact, more nearly the opposite has
occurred: we have come to view real numbers abstractly as symbols obeying
their own set of axioms, just like complex numbers. We now speak of number
fields: the real field &nd the complex field. The axioms which define a ﬁeld
were stated in Chapter 3 on vector spaces.

The theory of complex numbers can be developed by viewing them as ordered
pairs of real numbers, written (x, y). Let (a, b) and (¢, d) be two different com-
plex numbers, and let K be a real number. Then we define addition, multiplica-
tion of a real and a complex number, and multiplication of two complex
numbers by the following rules:

1. (a,b) + (c,d) = (a+ b,c +.d),

2. K-(a,b) = (Ka, Kb),

3. (a,b)-(c,d) = (ac — bd, bc + ad) .

From these definitions, we see that the set of all complex numbers—the complex
plane—has the same mathematical structure as the set of all vectors in a plane.

This approach is followed in Landau’s Foundations of Analysis, in which
the various number systems are built up logically from Peano’s five axioms; the
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306 THEORY OF ANALYTIC FUNCTIONS 6.1

imaginary number i is never mentioned. However, if we write the ordered pair
(a, b) as a + ib, where i# = — 1, then the above rule of complex-number multi-
plication is obeyed if we simply multiply out the product (a + ib)(c + id)
according to the usual rules of multiplication of reals. The introduction of the
symbol i subsumes the ordering aspect of the ordered pair of real numbers,
while extending the formal rules of arithmetic from real to complex numbers.

From the complex numbers constructed as ordered pairs of reals, where
(a, b) = a + ib, it is possible to generalize to hypercomplex numbers of three
or more components, for example (a, b, ¢c) = a + ib'+ kc. The four-component
quaternions, a type of hypercomplex number which satisfies. all the rules of
arithmetic except the commutative law of multiplication, are useful in dealing
with rotations of a rigid body. The four 4 X 4 Dirac matrices, 7;(i = 1, 2, 3, 4),
form a set of hypercomplex numbers which satisfy the anticommutative relations

rivi t riri =20, .

It can be shown that no matter how we define addition and multiplication
for these hypercomplex numbers, it is impossible to retain all the usual rules of
arithmetic. As Weyl points out, the complex numbers form a natural boundary
for the zxtension of the number concept in this respect.

6.1 ANALYTIC FUNCTIONS—THE CAUCHY-RIEMANN CONDITIONS

If to each complex number z in a certain domain there corresponds another
complex number w, then w is a function of the complex variable z: w = f{(z).
If the correspondence is one to one, we can view this as a mapping from one
plane (or part of it), the z-plane, to another, the w-plane. The complex func-
tions thus defined are equivalent to ordered pairs of real functions of two varia-
bles, because,w is a complex number depending on z = x + iy and therefore
can be written in the form" .

w(z) = u(x,y) + iv(x,y) .

However, this class of functions is too general for our purposes. We are interested
only in functions which are differentiable with respect to the complex variable
z—a restriction which is much stronger than the condition that » and v be
differentiable with respect to x and y. Therefore one of our first tasks in the
study of complex function theory will be to determine the necessary and suffi-
cient conditions for a complex function to have a derivative with respect to the
complex variable z. Single-valued functions of a complex variable which have
derivatives throughout a region of the complex plane are called analytic func-
tions. We shall restrict our attention to this special class of complex functions.

Two examples of complex functions (both written in the form w = u + iv)
are

l.w:z*:x—iy,‘ .
2.w=2=x+p)l=x*—y +i2xy.
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Presently, we shall show that (1) is not an analytic function, but that (2) is
analytic everywhere in the complex plane; i.e., its derivative exists at all points.
Before stating exactly what is meant by the derivative of a function of a
complex variable, we must have a notion of continuity for these functions.
In the definition that follows, mention is made of the absolute value of a
complex number, denoted by |z|. The reader will recall that |z| = (2z¥%)'?
= (x> + »*)"2. The absolute value is sometimes called the modulus.

Definition. A complex function w = f(z) is continuous at the point z
if, given any € > 0, there exists a d such that [f(z) — f(z)| < €, when
|z — 2| < 8, or f(z) is continuous at z, if

lim f(z) = f(z)) .

229

This definition is formally exactly like the definition of continuity for real
functions of a real variable. However, here the absolute value signs mean that
whenever z lies within a circle of radius J centered at z, in the complex z-plane,
then f(z) lies within a circle of radius e centered at f(z,) in the complex w-plane.
If f(z) = u(x,y) + iv(x,y), then f(z) is continuous at z, = x, + iy, if ¥ and »
are continuous at (xo, o).

From the class of single-valued, continuous complex functions; we now
want to select those that can be differentiated. Patterring, the definition of a-
derivative after that of real analysis, we have '

Definition. f(z) is differentiable at the point z, if the limit

llmf() f(zo) —llmM

20 zZ— 2z a0 A
exists. We shall denote this limit, the derivative of f(z) at z, by f7(z,).

A very important feature of the limits that occur in the definitions of
continuity and the derivative is that z may approach z, from any direction on
the plane. When we say the limit exists, we therefore mean that the same
number must result from the limiting process regardless of how the limit is taken.
This is also true in real analysis, but in that case there are only two possible
directions of approach in taking the limit: from the left or the right on the real
line. In real analysis, the limiting process is one-dimensional; in complex
analysis, it is two-dimensional.

The equation that defines the derivative means that given any ¢ > 0, there .
exists a d such that

f’(z) _f(z) —f(zo) £ ¢

Z— 2y

provided |z — z| < 8. The requirement that the ratio [f(z) — f(z0)]/(z — zo)
always tends to the same limiting value, no matter along what-path z approaches
2o, is an extremely exacting condition. The theory of analytic functions contains
a number of amazing theorems, and they all result from this stringent initial
requirement that the functions possess.. isotropic” derivatives.
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A single-valued function of z is said to be analytic (or regular) at a point
z, if it has a derivative at z, and at all points in some neighborhood z,. Thus
a slight distinction is drawn between differentiability and analyticity. It pays
to do this, because although there exist functions which have derivativesat certain
points, or even along certain curves, no interesting results can be obtained unless
functions are differentiable throughout a region, i.e., unless they are analytic.
Thus if we say a function is analytic on a curve, we mean that it has a derivative
at all points in a two-dimensional strip containing the curve. If a function is
not analytic at a point or on a curve, we say it is singular there.

We shall now examine the two complex functions mentioned earlier for
differentiability and analyticity. We write the derivative at z in the form _

f(z) = limf(ZO + Az) — fl(z) .

Az—0 AZ

by letting z =2z, + Az in the or‘igivnal definition. For f(z) = z2, we have

A
Pl =tim BT AN =8 e+ Ad =25,

a0 Az Az-0
a result which is clearly inc:lependent of the path along which Az — 0, so f(z) = 2*
is differentiable and analytic everywhere. The result parallels exactly the result
for the derivative of the real function f(x) = x%.
On the other hand, if f(z) = z*, we have

7 5o Zy + Az* —zF Az*
) s (Zo) }.lzm Az - . iz—.o Az
Now if Az — 0 along the real x-axis, then Az = Ax and Az* = Ax* = Ax, so
f'(z) = +1. However, if Az approaches zero along the imaginary y-axis, then
Az = iAy so Az* = —iAy = — Az, so f'(z) = —1. Since at any point z, the
limit as z — z, depends on the direction of approach, the function is not differ- .
entiable or analytic anywhere. [As a general rule, Az*/Az = %%, where
6 = tan~' (Ay/Ax), which manifestly involves the direction of approach () in
taking the limit.]

Many of the theorems on dlﬂ‘crenuablhty in real analysis have analogs in
eomplex analysis. For example: :

1. -A constant funcuon is analytic.

2. flz) =z"(n=1,2, --+) is analytic.

3. The sum, product, or quotient of two analyticfunctions is analytic, provided,
in the case of the quotient, that the denominator does not vanish anywhere
in the region under consideration. :

‘4. An analytic function of an analytic function is analytic.

The proofs go through exactly as in the real case. -

We now determine the necessary and sufficient conditions for a function
w(z) = u(x,y) + iv(x, y) to be differentiable at a point. First, we assume that
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w(zj is in fact differentiable for some z = z,. Thef

W (2o) ——llm-A&—-—ll <Az+ _>

Az —»0 az—0 Az

Since w’(z) exists, it is indgpendent of how Az — 0; that is, it is independent
of the ratio Ay/Ax. If the limit is taken along the real.axis, Ay = 0, and
Az = Ax. “Then ;

Au | .Av av
+ i— L4+

(Ax : Ax ax ox

On the other hand, if we approach the ongm along the imaginary axis, Ax = 0

and Az = iAy. Now

w’(z) = lim
. Ax—0

(Av Au) v _ au
Ay Ay ay 6y

But by the assumption, of differentiability, these two limits must be ecjual.
Therefore, equating real and imaginary parts, we have

u _0v g W _ _Ou S (6.)
ox 0Oy : ox ay
Equations (6.1) are known as the Cauchy-Riemann equations. They give a
necessary condition for differentiability. We have determined this condition
from special cases of the requirement of differentiability; therefore it is not
surprising that these conditions alone are not sufficient. '

The sufficient conditions for the differentiability of w(z) at z, are, first, that
the Cauchy-Riemann equations hold there, and second, that the first partial
derivatives of u(x, y) and v(x, y) exist and be continuous at z,.

The proof is straightforward. To begin, u is continuous at (xo, y,) because
it is differentiable there; the partial derivatives of u are continuous by hypothesis.
Under these assumptions, it follows from the calculus of functions of several
variables* that ;

w' (zo) = leo
. y

Au = u(x; + Ax, yo + Ay) — u(xo, yo) .
_a_"A +—Ay+e,Ax+esz.
0x
where 0u/dx and 0u/dy are the pamal derlvatlves evaluated at the point (x, yo)
and where €; and ‘¢, go to zero as both Ax and Ay go to zero. Usmg a similar
formula for »(x, y), we have

Aw = w(zo -+ Az) — w(z) = Au + iAv
B_u Ax + Ay + 6 Ax + Ay + 1<a Ax + — Ay + 6&Ax + e.,Ay)

" ox

* See, for example, G. B. Thomas, Jr..Calculus and Analytic Geometry, 4th Ed.,
Addison-Wesley Publishing Co., 1968, Section 15-4, p. 503 Eq. 4, or W. Kaplan, Ad-
vanced Calculus, Addison-Wesley Publishing Co., 1953, Section 2-6, p. 84.
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“Now using the Cauchy-Riemann equations, which by assumption hold at the
point- (xo, yo), we have

By == Z_“ (Ax + iAy) + '%f; (Ax + iAy) + Ax(e, + i) + Aples + ied) -
X y
Therefore

’ Ax Ay
—_— = — + des) — le,) — .
Az o + lax (e + f:) + (€2 = 54) Az )
Since |Az| = [ (Ax)2 4+ (Ap)’]'?, |Ax| < |Az| and |Ay| < |Az|, and so |Ax/Az|
< 1 and |Ay/Az| < 1. Since these factors are bounded, the last two terms in
the above equation tend to zero with Az because ¢, €, €, and €4 8O to zero as
Az goes to zero. Therefore at z,

2

ox ox’ .

w'(zp) =

the limit is independent of the path followed, so the derivative exists. Using
- the Cauchy-Riemann conditions, we also have
ov au
w/ (zo) = —
(z0) % ay
Example. Consider the function z°. We have
F

2= (=37 +i3x —)y)=u+iv.

(6.3)

Thus
ou ov 0 ou
—=3x? =3y ==, d = OXY = ——
0x v oy Ox .4 oy

Thus the Cauchy-Riemann equations hold everywhere. Since the partial deri-
vatives are continuous, the function z*is, in fact, analytic everywhere. A function
which is analytic in the entire complex plane is said to be an entire function.
The derivative of z* may be found using Eq. (6.2) or (6.3). We obtain

02 _ou , v . '

g Tl i 3 2lX = 3 2 »

el [ (x* =) + 2ixy] = 3z
a satisfying result. As a second example, we leave it to the reader to show that
the function |z|? = zz* is differentiable only at the origin, and therefore is
analytic nowhere.

One remarkable result which points to connections with physics follows
immediately from the Cauchy-Riemann equations. Assuming that they hold
in a region, we have

u _ ™ v _%u 62 u _
ot oxdy oyox oy Y S ]

if the second partial derivatives are continuous, so we can interchange the orders
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of differentiation in the mixed partial derivative. It follows in the same way
that the function v also satisfies the two-dimensional Laplace equation. Thus
both the real and imaginary parts of an analytic function with continuous second
partial derivatives satisfy the two-dimensional Laplace equation. We shall later
prove, using integration theory, that the second partial derivatives of an analytic
function are necessarily continuous, so this qualification can be dropped. (It is
interesting that these theorems about derivatives can be proved only by integra-
tion.) Any function ¢ satisfying V?¢ = 0-is called a harmonic function. If
f = u + ivisan analytic function, then V2u = V*» = 0, and u and v are called
conjugate harmonic functions.

Given one of two conjugate harmonic functions, the Cauchy-Rlemann
equations can be used to find the other, up to a constant. For example, the
function u(x,y) = 2x — x* + 3x)? is easily seen to be harmonic. To find its
harmonic conjugate, we proceed as follows:

O _ x4 3Pr=—v=2— 3+ + b

where ¢(x) is some function of x. Now, usmg the other Cauchy-Rlemann
equation, we obtain :
ov

- = —_uﬁ —6xy + ¢’(x) = —bxy— ¢' =0.
0x oy

Thus ¢(x) must be a constant, and the harmonic conjugate of u is
v =2y — 3x% + »* + const.

Note that the function w = u + iv = 2z — 2> + C is an analytic function, as
we know it must be.

" Before leaving the Cauchy-Riemann conditions, let us take advantage of
being physicists to present another, shorter derivation of these conditions, based
" on the use of infinitesimals. Letw = u + ivand w/ = p 4 iq. Then ow = w’4z,
or, taking real and imaginary parts,

ou = pox — qoy , 0v = pdy + qox .
It follows immediately that

Ou _ 0v _ Bv Ou

—=_—= —=-—==9.

x o - oy

These equations are identical to the Cauchy-Riemann equations (6.1).
Continuing in this informal spirit, we may derive another closely related
result which provides some insight into the meaning of analyticity. Again, let
w(z) = w(x, y) = u(x, y) + iv(x, ). We now show that dw/dz* = 0 if and only
if the Cauchy-Riemann equations hold. We shall not worry about the meaning
of this derivative with respect to z*, but just differentiate formally, treating the
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derivative as symbolic. Using the expressions _
x=(z+ z%)/2 and y = (z—z%)/2i
we have

ow _ 0w 0ox ow oy
_ 0z%  ox 0z* ay 0z*

=G+ e+ G +i3(-5)
_(ax+16x%+ y+’6y 2i

ou .« ov 0v , Ou

%< 6y>+ <ax+6y>'
If the Cauchy-Riemann equations hold, this last expression vanishes. If, on the
other hand, ow/dz* = 0, then both the real and imaginary parts of the last
expression must vanish, so the Cauchy-Riemann equations hold.

This purely formal result, which can be made rigorous, is trying to tell us
that analytic functions are independent of z*: they are functions of z alone.
Thus analytic functions are true functions of a complex variable, not just complex
functions of two real variables (see, for example, Problem 1), which will in
general depend on z* as well as z according to

z4+ z*¥ z — z*)

fley) = (22

6.2 SOME BASIC ANALYTIC FUNCTIONS

One of the most useful functions in the complex domain is the exponenual
function which we define for z = x + iy by

& =e*(cosy + isiny) .- (6.5)

It follows easily from this definition and our earlier work that e* is an entire
function and that

— e = é*.
dz .

The other familiar properties of exponentials, in particular, et = el e?2,
follow readily from Eq. (6.5). We note that € is a periodic function of period
2mi: ' . ,

et = g™ = ¢% (cos 2m + isin 27) = €.
From Eq. (6.5) we see that

e’ =cosy.+isiny,
so it follows that
e’ 4oV 2 et — e

coSs = " siny =
7 2 ¢ 2%
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These relations suggest that for an arbitrary complex z we define

iz —iz
cosz=4T¢ . (6.6)
2
iz __ p—iz i
sinFe=S o, (6.7)
2i
Since
.4_ b=
dz
it is a simple matter to calculate the derivatives of cos zand sin z. We find that
d ie" — je " .
—C08§Z = ———— =s—sinz,
dz 2
s iz . iz
_‘isinz:li_j_"_e-zcosz,
dz 2i

as we might expect from experience with the real variable case. Using Eqgs. (6.6)
and (6.7), it is a simple matter to verify that all, the familiar trigonometric
identities, such as

cos (z; + z;) = cos z; €os z, — sin z;sin z, ,

continue to be valid for complex variables.
The complex functions sine and cosine may, of course, be put in the form
u(x, y) + iv(x, y). For example,

sin z = 21_[3“1“» — emitx+in ]
5 e

=.l e ’(cos x + isinx) — 2 e’(cos x — isin x)
2i 2i

= sin x(e” + e")]2 +. icosx(e? — e™’)/2.
Therefore
sin z = cosh y sin x + i sinh y cos x . (6.8)
Similarly,
cos z = cosh y cos x — isinh ysin X . (6.9)

Setting x = 0, we obtain the useful relations sin (iy) = isinhy and cos (iy)
= cosh y. We also see that the Cauchy-Riemann conditions are satisfied every-
where, as we know they must be. Other properties which follow directly from
Eqgs. (6.8) and (6.9) are

(sin z)* = sin (z¥) ,
sin (—z) = —sin (2) ,

sin (z 4+ 2x) = sin (z) .
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Using the sine and cosine functions, we can define the other familiar

trigonometric functions. For example,
tan z = sin z/cos z ;

similar extensions of the real case are defined for the cotangent, secant, and
cosecant. These functions differ from the sine and cosine in that they are not-
analytic everywhere. Thé tangent, being the ratio of two analytic functions, will
be analytic everywhere except at points where cos z = 0. Using the real and
imaginary parts of the cosine, we can rewrite this condition as

coshycosx =0, sinh ysin x= 0.

Now cosh y > 1 for all real y, so the first equation has a solution whenever
cosx=0,orx= (2n+ 1)x/2,n =0, =1, £2, ---. At these points, sin x
= =*1, so the second equation requires that sinh y = 0, thatis, y = 0. Thus_
the tangent function is singular at the points (2n + 1)z/2, (n = 0, =1,7---) on
the real axis, and. only at these points. Therefore tan z becomes infinite at
precisely those points where tan x (real x) becomes infinite'and only at those
- points.

On the basis of the above discussion, one might be tempted to think that
the complex trigonometric functions are “just the same thing” as their real
counterparts. However, the reader can easily show that

>

« |sin'z|* = sin’ x + sinh?y |

and this expression increases without limit as y tends to infinity. This is in marked
contrast with the real case, where |sin x| <1 for all real x.

The functions which we have discussed thus far all have the property that
if we pick any point z, in the complex plane and follow any path from z, through
the plane back to z, then the value of the function changes continuously along
the path, returning to its original value at z. For example, suppose that we
consider the function w(z) = e and start at the point z, = 1, encircling the origin
in the z-plane counterclockwise along the unit circle. Figure 6.1(a) shows the
circular path in the z-plane, and Fig. 6.1(b) shows the corresponding path in
. thew-plane. [The useof two complex planes to “graph” the function w(z) is often

employed in complex variable theory.] We note that both paths are closed,
which is just the geometrical statement of the fact that if we start at a point z,
where the function has the value w(z), then when we maqve along a closed curve
" back to z, the functional values also follow a smooth pégh back to w(zy).

Now for € this result"is hardly surprising since we have defined ¢ in such
a way as to ensure this b&havior, letting ourselves be guided by the properties
of the real exponential function. Now if we look at another simple function,
namely, the square root, we see that things do not always go so smoothly. Let
us write formally

wiz) =vz= 1/;+—ly



