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Preface

This book describes the contemporary state of the theory and some numerical
aspects of inverse problems in partial differential equations. The topic is of sub-
stantial and growing interest for many scientists and engineers, and accordingly to
graduate students in these areas. Mathematically, these problems are relatively new
and quite challenging due to the lack of conventional stability and to nonlinearity
and nonconvexity. Applications include recovery of inclusions from anomalies of
their gravitational fields; reconstruction of the interior of the human body from
exterior electrical, ultrasonic, and magnetic measurements, recovery of interior
structural parameters of detail of machines and of the underground from similar
data (non-destructive evaluation); and locating flying or navigated objects from
their acoustic or electromagnetic fields. Currently, there are hundreds of publica-
tions containing new and interesting results. A purpose of the book is to collect
and present many of them in a readable and informative form. Rigorous proofs
are presented whenever they are relatively short and can be demonstrated by quite
general mathematical techniques. Also, we prefer to present results that from our
point of view contain fresh and promising ideas. In some cases there is no com-
plete mathematical theory, so we give only available results. We do not assume
that a reader possesses an enormous mathematical technique. In fact, a moderate
knowledge of partial differential equations, of the Fourier transform, and of basic
functional analysis will suffice. However, some details of proofs need quite special
and sophisticated methods, but we hope that even without completely understand-
ing these details a reader will find considerable useful and stimulating material.
Moreover, we start many chapters with general information about the direct prob-
lem, where we collect, in the form of theorems, known (but not simple and not
always easy to find) results that are needed in the treatment of inverse problems.
We hope that this book (or at least most of it) can be used as a graduate text. Not
only do we present recent achievements, but we formulate basic inverse problems,
discuss regularization, give a short review of uniqueness in the Cauchy problem,
and include several exercises that sometimes substantially complement the book.
All of them can be solved by using some modification of the presented methods.
Parts of the book in a preliminary form have been presented as graduate courses
at the Johannes-Kepler University of Linz, at the University of Kyoto, and at

vii



viit Preface

Wichita State University. Many exercises have been solved by students, while
most of the research problems await solutions. Parts of the final version of the
manuscript have been read by Ilya Bushuyev, Alan Elcrat, Matthias Eller, and
Peter Kuchment, who found several misprints and suggested many corrections.
The author is grateful to these colleagues for their attention and help. He also
thanks the National Science Foundation for long-term support of his research,
which stimulated the writing of this book.

Wichita, Kansas Victor Isakov
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Inverse Problems

In this chapter we formulate basic inverse problems and indicate their applications.
The choice of these problems is not random. We think that it represents their
interconnections and some hierarchy.

An inverse problem assumes a direct problem that is a well-posed problem of
mathematical physics. In other words, if we know completely a “physical device,”
we have a classical mathematical description of this device including uniqueness,
stability, and existence of a solution of the corresponding mathematical problem.
But if one of the (functional) parameters describing this device is to be found (from
additional boundary/experimental) data, then we arrive at an inverse problem.

1.1 The inverse problem of gravimetry

The gravitational field u, which can be measured and perceived by the gravitational
force Vu and which is generated by the mass distribution f, is a solution to the
Poisson equation

(1.1.1) —Au=f

inR?, where lim u(x) = 0as |x| goes to +oc. For modeling and for computational
reasons, it is useful to consider as well the plane case (R?). Then the behavior at
“infinity must be u(x) = Clnlx| + uo(x), where uy goes to zero at infinity. One
assumes that f is zero outside a finite domain , which is a ball or a body close
to a ball (earth) in gravimetry. The direct problem of gravimetry is to find « given
f. This is a well-posed problem: Its solution exists for any integrable f, and even
for any distribution that is zero outside €2; it is unique and stable with respect to
standard functional spaces. As a result, the boundary value problem (1.1.1) can
be solved numerically by using difference schemes, although these computations
are not very easy in the three-dimensional case. This solution is given by the
Newtonian potential

(1.1.2) u(x) = /Qk(x =NfOdy, k@) = 1/(4rlx])




2 1. Inverse Problems

(ork(x) = —1/Q2x) In|x| in R?). Practically we perceive and can measure only
the gravitational force Vu. .

The inverse problem of gravimetry is to find f given Vu on I', which is a part
of the boundary 9€2, of Q2.

This problem was actually formulated by Laplace, but the first (and simplest)
results were obtained only by Stokes in the 1860s and Herglotz about 1910 [Her].
We will analyze this problem in Sections 2.1-2.2 and 4.1. There is an advanced
mathematical theory of this problem presented in a book of the author [Is4]. It is
fundamental in geophysics, since it simulates recovery of the interior of the earth
from boundary measurements of the gravitational field. Unfortunately, there is a
strong nonuniqueness of f fora given gravitational potential outside Q. However,
if we look for a more special type of f (like harmonic functions, functions in-
dependent of one variable, or characteristic functions x (D) of unknown domains
D inside £2), then there is uniqueness, and f can be recovered from u given out-
side 2, theoretically and numerically. In particular, one can show uniqueness of
f = x(D) when D is either star-shaped with respect to its center of gravity or
convex with respect to one of the coordinates.

An important feature of the inverse problem of gravimetry is its ill-posedness,
which creates many mathematical difficulties (absence of existence theorems due to
the fact that ranges of operators of this problem are not closed in classical functional
spaces) and numerical difficulties (stability under constraints is (logarithmically)
weak, and therefore convergence of iterative algorithms is very slow, so numerical
errors accumulate and do not allow good resolution). In fact, it was Tikhonov
who in 1944 observed that introduction of constraints can restore some stability to
this problem, and this observation was one of starting points of the contemporary
theory of ill-posed problems.

This problem is fundamental in recovering the density of the earth by interpret-
ing results of measurements of the gravitational field (gravitational anomalies).
Another interesting application is in gravitational navigation. One can measure
the gravitational field (from satellites) with quite high precision, and then possibly
find the function f that produces this field, and then use these results to navigate
aircraft. The point is that to navigate aircraft one needs to know u near the surface
of the earth @, and finding f supported in  gives u everywhere outside of Q by
solving a much easier direct problem of gravimetry. The advantage of this method
is that the gravitational field is the most stationary and stable of all known physical
fields, so it can serve in navigation. The inverse problem here is a way to code
and store information about the gravitational field. This problem is quite unstable,
but still manegeable. We discuss this problem in Sections 2.2, 2.3, 3.3, 4.1, and in
Chapter 10. The direct problem is much easier: given f, one can find the field
by precise, stable, and effective numerical procedures.

Inverse gravimetry is a classical example of an inverse source problem, where
one is looking for the right side of a differential equation (or a system of equations)
from extra boundary data. Consider a simple example: in the second-order ordinary
differential equation —u” = f onR, letQbetheinterval (—1, 1). Letug = u(—1),



1.1. The inverse problem of gravimetry 3

u; = u'(—1); then
X
u(x) = ug + uy(x + 1) ~ f (x —y)f(y)dy when — 1 < x < 1.
-1

The prescrition of the Cauchy data u, u’ att = 1 is equivalent to the prescription
of two integrals

[ (1 = ) f(y)dy and f £y,
Q Q

We cannot determine more given the Cauchy dataatz = -1, 1, no matter what the
original Cauchy data. The same information about f is obtained if we prescribe any
u on 32 and if in addition we know «’. In particular, nonuniqueness is substantial:
one cannot find a function from two numbers. If we add to f any function f; such
that

[ﬂ v(y) foly)dy =0

for any linear function v (i.e., for any solution of the adjoint equation —~v" = 0),
then according to the above formulae we will not change the Cauchy data on 3.
The situation with partial differential equations is quite similar, although more
complicated.

If Vu is given on T', then u can be found uniquely outside 2 by uniqueness in
the Cauchy problem for harmonic functions and the assumptions on the behavior
at infinity. Observe that given « on Q2 C R one can solve the exterior Dirichlet
problem for u outside §2 and find 8,4 on 8%, so in fact we are given the Cauchy
data there.

Exercise 1.1.1. Assume that Q is the unit disk {{x| < 1} in R%. Show that a
solution f of the inverse gravimetry problem that satisfies one of the following
three conditions is unique. (1) It does not depend on r = |x|. (2} it satisfies the
second-order equation 83 f = 0. (3) It satisfies the Laplace Equation Af = 0 in
Q. In fact, in the cases (2) and (3), 2 can be any bounded domain with 3Q € C3
with connected R2\Q. {Hint: to handle case (1) consider v = r3,u and observe
that v is harmonic in . Determine v in §2 by solving the Dirichlet problem and
then find f. In cases (2) and (3) introduce new unknown (harmonic in £2) functions
v=>32uandv = Au} '

Exercise 1.1.2. In the situation of Exercise 1.1.1 prove that a density f(r) creates
zero exterior potential if and only if

1
/ rf(rydr = 0.
0

{Hint: make use of polar coordinatesx = r cos 8,y = r sin 6 and of the expression
for the Laplacian in polar coordinates,

A =r'3,(rd,) + d(r~'3p)).



4 1. Inverse Problems

Observe that for such f the potential 4 does not depend on 6, and perform an
analysis similar to that given above for the simplest differential equation of second
order.}

What we discussed briefly above can be called the density problem. It is linear
with respect to f. The domain problem when one is looking for the unknown D is
apparently nonlinear and seems (and indeed is) more difficult. In this introduction
we simply illustrate it by recalling that the Newtonian potential U of the ball
D = B(a; R) of constant density p is given by the formulae

(1.1.3)

. ) _ R’p/3|x —a|™! when |x —a| > R;
U(X, PX(B(a, R))) = [Rzp/z _ ,0/6IX __a!Z when |X _ al < R.

These formulae imply that a ball and its constant density cannot be simultaneously
determined by their exterior potential (|x — a| > R). One can only find R>p.
Moreover, according to (1.1.2) and (1.1.3), the exterior Newtonian potential of the
annulus A(a; Ri, R;) = B(a; R)\B(a; R)) is (R3 — R})p/3lx — al*, so only
p(Rg - RI3) can be found. In fact, in this example the cavity of an annulus further
deteriorates uniqueness. The formulae (1.1.3) can be obtained by observing the
rotational (around @) invariancy of the equation (1.1.1) when f = px(B(a; R))
and using this equation in polar coordinates together with the continuity of the
potential and first order derivatives of the potential at 9 D.

We will give more detail on this interesting and not completely resolved problem
in Section 4.1, observing that starting from the pioneering work of P. Novikov [No],
uniqueness and stability results have been obtained by Prilepko {Pr]. Sretensky,
and the author [Is4].

There is another interesting problem in geophysics, that of finding the shape of
the geoid D given the gravitational potential at its surface. Mathematically, like
the domain problem in gravimetry, it is a free boundary problem that consists in
finding a bounded domain D and a function « satisfying the conditions

Au = pin D, Au = 0 outside D,
u,Vu € C(R*, limu(x) = Qas x| — oc,

u=gondD,

where g is a given function. To specify the boundary condition, we assume that D
is star-shaped, so it is given in polar coordinates (r, ) by the equation r < d(o).
o} = 1. Then the boundary condition should be understood as u(d(c)o) =
g(a), where g is a given function on the unit sphere. This problem is called the
Molodensky problem, and it was the subject of recent intensive study by both
mathematicians and geophysicists. Again, despite certain progress, there are many
challenging questions, in particular, the global uniqueness of a solution is not
known.



1.2. The inverse conductivity problem 5

To describe electrical and magnetic phenomena one makes use of single- and
double-layer potentials

U®(x; gdl') =[FK(xvy)g(y)dl"(y)

and
U@ (x: gdT') = f B K (x. )8 (AT()
r

distributed with (measurable and bounded) density g over a piecewise-smooth
bounded surface I in R>. As in inverse gravimetry, one is looking for g and T’
(or for one of them) given one of these potentials outside a reference domain 2.
The inverse problem for the single-layer potential can be used, for example, in
gravitational navigation: it is probably more efficient to look for a single layer dis-
tribution g instead of the volume distribution f. As a good example of a practically
important problem about double layer potentials we mention that of exploring the
human brain to find active parts of its surface I, (cortical surface). The active parts
occupy not more than ten percent of I';. They produce a magnetic field that can be
described as the double-layer potential distributed over I'; with density g(y), and
one can {quite precisely) measure this field outside the head Q of the patient. We
have the integral equation of the first kind

G(x)=/ K (x, Ngndr(y), x €%,
rc

where I, isa given C' -surface, I, C Q,andg € L*®(I,)is an unknown function.
In addition to its obvious ill-posedness, an intrinsic feature of this problem is the
complicated shape of I';. There have been only preliminary attempts to solve it
numericaily. No doubt a rigorous mathematical analysis of the problem (asymptotic
formulae for the double-layer potential when I, is replaced by a closed smooth
surface or, say, use of homogenization) could help a lot.

In fact, it is not very difficult to prove uniqueness of g (up to a constant) with
the given exterior potential of the double layer.

We observe that in inverse source problems one is looking for a function f of
the partial differential equation —Au = f when its solution « is known outside
Q. If one allows f to be a measure or a distribution of first order, then the inverse
problems about the density g of a single or double layer can be considered as an
inverse source problem with f = dI" or f = gd,(dl).

1.2 The inverse conductivity problem

The conductivity equation for electric (voltage) potential u is

(1.2.1) div(aVu) = 0in Q.
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For a unique determination of u one can prescribe at the boundary the Dirichlet
data

(12.2) u = gondQ.

Here we assume thata is a scalar function, €y < a, that is measurable and bounded.
In this case one can show that there is a unique solution ¥ € H()(2) to the
direct problem (1.2.1}(1.2.2), provided that g € H(;,2)(9%2) and 3R is Lipschitz.
Moreover, there is stability of # with respect to g in the norms of these spaces. In
other words, we have the well-posed direct problem.

Often we can assume that a is constant near Q2. Then, if g € C?(3%2), the

solution u € C! near 8%2, so the following classical Neumann data are well-
defined:

(1.2.3) adyu =h onT,

where I is a part of 3Q € C2.

The inverse conductivity problem is to find a given h for one g (one boundary
measurement) or for all g (many boundary measurements).

In many applied situations it is h that is prescribed on 3€2 and g that is measured
on I'. This makes some difference (not significant theoretically and computation-
ally) in the case of single boundary measurements but makes almost no difference
in the case of many boundary measurements when I’ = 92, since actually it is
the set of Cauchy data {g, A} that is given. The study of this problem was initiated
by Langer [La] as early as the 1930s.

The inverse conductivity problem looks more difficult than the inverse gravi-
metric one: it is “more nonlinear.”” On the other hand, since u is the factor of a in
the equation (1.2.1), one can anticipate that many boundary measurements pro-
vide much more information about ¢ than one boundary measurement. We will
show later that this is true when the dimension n > 2. When n = 1, the amount
of information about a from one or many boundary measurements is almost the
same.

This problem lays a mathematical foundation to electrical impedance tomog-
raphy, which is a new and promising method of prospecting the interior of the
human body by surface electromagnetic measurements. On the surface one pre-
scribes current sources (like electrodes) and measures voltage (or vice versa) for
some or all positions of those sources. The same mathematical model works in a
variety of applications, such as magnetometric methods in geophysics, mine and
rock detection, and the search for underground water.

In the following exercise it is advisable to use polar coordinates (r, 6) in the
plane and separation of variables.

Exercise 1.2.1. Consider the inverse conductivity problem for @ = {r < 1}inR?
with many boundary measurements when a(x) = a(r). Show that this problem is
equivalent to the determination of a from the sequence of the Neumann data w; (1)
of the solutions to the ordinary differential equations —r(arw’)’ — k’aw = Oon
(0, 1) bounded at r = 0 and satisfying the boundary condition w(1l) = 1.
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We will conclude this section with a discussion of the origins of equation (1.2.1),
which we hope will illuminate possible applications of the inverse conductivity
problem.

The first source is in Maxwell’s system for electromagnetic waves of frequency
w:

cutl E = —iwuH,
(1.2.49) curl H = oE + iwekE,

where E, H are electric and magnetic vectors and o, €, and p are respectively
conductivity, electric permittivity, and magnetic permeability of the medium. In
the human body g is small, so we neglect it and conclude that curl E = 0 in Q.
Assuming that this domain is simply connected, we can state that E is a potential
field; i.e., E = Vu. Since it is always true that div curl H = 0, we obtain for u
equation (1.2.1) with

(1.2.5) a =0 + iwe.

Observe that in medical applications o and € are positive functions of x and w.
In certain important situations one can assume that € is small and therefore obtain
equation (1.2.1) with the real-valued coefficient a = o, which is to be found from
exterior boundary measurements. This explains what the problem has to do with
inverse conductivity. An important feature of the human body is that conductivites
of various regions occupied by basic components are known constants, and actually
one is looking for the shapes of these regions. For example, conductivities of
muscles, lungs, bones, and blood are respectively 8.0, 1.0, 0.06, and 6.7.

In geophysics the same equation is used to describe prospecting by use of
magnetic fields. Moreover, it is a steady-state equation for the temperature u. In-
deed, if at the boundary of a domain Q we maintain time-independent temperature
g(x), x € 3R, then (Section 9.0) a solution of the heat equation 9, U = div(aVU)
in, 0. < t, is (exponentially) rapidly convergent to a steady-state solution u to
the equation (1.2.1) with the Dirichlet boundary condition (1.2.2). The function a
then is called the thermal conductivity of the medium and is to be found in several
engineering applications.

So, the inverse conductivity problem applies to a variety of situations when
important interior characteristics of a physical body are to be found from boundary
experiments and observations of fundamental fields.

1.3 Inverse scattgring

In inverse scattering one is looking for an object (an obstacle D or a medium
parameter) from results of observations of so-called field generated by (plane)
incident waves of frequency k. The field itself (acoustic, electromagnetic, or elastic)
in the simplest situation of scattering by an obstacle D is a solution u to the
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Helmbholtz equation

(13.1) ~Au—Ku=0 nR\D
satisfying the homogeneous Dirichlet boundary condition
(1.3.2) u=00ndD (soft obstacle)

or another boundary condition, like the Neumann condition
(1.3.24) d,u + bu = 0 on 3D (hard obstacle).

This solution is assumed to be the sum of the plane incident wave ' and a scattered
wave u° that is due to the presence of an obstacle

(13.3) Coux) =W (x) + ut(x),

whereu’ = exp(iké -x). In some situations spherical incident waves u' (depending
only on |x|) are more useful and natural.

Basic examples of scattering by a medium are obtained when one replaces
equation (1.3.1) by the equation

(1.3.9) —Au + (¢ — ikbg — kKPag)u =0 inR>.

The coefficients aq, by, ¢ are assumed to be in L*°(2) for a bounded domain €2,
with by, ¢ zero outside Q2 and ag > ¢ > 0 and equal to 1 outside 2. In the
representation (1.3.3) the first term in the right side is a simplest solution of the
Helmholtz equation in R* when there is no obstacle or perturbation of coefficients.
In the presence of obstacles the solutions are different, and the additional term #°
can be interpreted as a wave scattered from an obstacle or perturbation.

It can be shown that for any incident direction £ € T there is a unique solution
u of the scattering problem (1.3.1), (1.3.2), (1.3.3) or (1.3.3), (1.3.4), where the
scattered field satisfies the Sommerfeld radiation condition

(13.5) lim r(8,u* — iku®) = O as r goesto + oo.

This condition guarantees that the wave u(x) is an outgoing one. For soft obstacles
one can assume 9D & C2, R}\D is connected, and then u € C'(R*\D). For
scattering by medium we have u € C' and 4 € C? whenc, by, aq € C'. We
discuss solvability in more detail in Chapter 6.

Any solution to the Helmbholtz equation outside of © that satisfies condition
(1.3.5) admits the representation

(1.3.6) w(x) = exp(ikr)/rA(o, &; k) + or™,

where A is called the scattering amplitude, or far field pattern.

The inverse scattering problem is 1o find a scatterer (obstacle or medium) from
far field pattern.

This problem is fundamental for exploring bodies by acoustic or electromagnetic
waves. The inverse medium problem with ag = 1, bp = 0 is basic in quantum
mechanics, as suggested by Schrodinger in the 1930s because quantum mechanical



