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Foreword

Waves underlie a wealth of natural phenomena, ranging from seismic activity to
elementary particles, and encompassing light and sound. Mathematical tools that
are useful for modeling and understanding the behavior of waves are therefore of
central importance in science and engineering. The insights of Huygens and Fresnel
led to the description of wave propagation in terms of secondary waves: if a wave
field is known at a given initial plane, its propagation away from it can be modeled
by expressing the field as a continuous superposition of secondary waves emanating
from all points over the plane. This beautiful interpretation provides a connection
between wave propagation and linear integral transformations. As underlined by
Feynman’s path-integral formalism of quantum mechanics, this interpretation also
holds for the description of the temporal evolution of quantum-mechanical wave
functions, where time plays the role of the propagation direction, and instead of an
initial plane one must consider all space at an initial time.

The mathematical similarity between different wave phenomena becomes more
accentuated when regimes that allow certain approximations are considered. For
example, in the description of optical waves of a given temporal frequency, one is
often interested in highly collimated beams that propagate mainly around a specific
direction. In this case, the electric field distribution satisfies approximately what
is known as the paraxial wave equation. This equation is mathematically similar
to the Schrodinger equation ruling the evolution of quantum wave functions in
the nonrelativistic regime. Further, the effect of some refractive index distributions
on the propagation of an optical field can be formally analogous to that of some
potentials over the evolution of a particle’s wave function. It is then natural that the
same propagation models be employed in the description of these systems.

This book gives a thorough overview of a class of integral transformations,
known as linear canonical transformations, which are remarkable both for their
mathematical elegance and for their range of physical applications. Mathematically,
linear canonical transformations are defined by their simple properties: (1) each of
these transformations is associated with, and fully determined by, a 2 x 2 matrix
(or 2N x 2N matrix, when applied to functions that depend on N variables); (2)
a concatenation of a series of linear canonical transformations can be reduced
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to a single linear canonical transformation whose matrix is the product of the
matrices for the original independent transformations. Physically, linear canonical
transformations describe wave propagation in cases where the Hamiltonian is at
most quadratic in both position (e.g., thin lenses and quadratic gradient index
media in optics, or harmonic-oscillator potentials in quantum mechanics) and
momentum (i.e., within the paraxial approximation in optics or the non-relativistic
approximation in quantum mechanics). In these contexts, the matrix associated
with the transformation turns out to be the transfer matrix that maps the initial
position and momentum of a classical particle or ray to the final ones for the
system in question. Linear canonical transformations include as special cases the
Fourier transformation, the fractional Fourier transformation (which describes the
paraxial propagation of optical fields in quadratic gradient index fibers, as well
as the evolution of quantum states in a harmonic oscillator potential), the Fresnel
transformation (which describes free propagation of paraxial wave beams), and even
simple multiplication by quadratic phase factors.

This book is, to my knowledge, the first devoted fully to providing a com-
prehensive study of linear canonical transformations and their applications. Some
previous publications have included some discussions on these transformations,
while others have focused on specific special cases like the Fourier or even the
fractional Fourier transformations. While some of these special cases are standard
items in the toolbox of most physicists and engineers, the more general class
of transformations discussed here is not as widely known. The present book is
therefore a very timely and welcome addition to the scientific literature. Further,
its chapters are authored by some of the most influential researchers in the
subject. The first part of the book concentrates on the origins, definition, and
properties of linear canonical transformations. Chapter 1, by Kurt Bernardo Wolf,
gives a historical perspective on the independent development of linear canonical
transformations in optics and nuclear physics, from the point of view of someone
at the intersection of these two communities. In Chap. 2, Martin J. Bastiaans and
Tatiana Alieva provide a detailed treatment of the definition and properties of linear
canonical transformations, paying careful attention to cases of special interest. The
eigenfunctions of linear canonical transformations, i.e. those functions that retain
their functional form following transformation, are discussed by Soo-Chang Pei
and Jian-Jiun Ding in Chap. 3. The different types of uncertainty relations between
functions and their linear canonical transforms are the subject of Chap. 4, by R.
Tao. In Chap. 5, Tatiana Alieva, José A. Rodrigo, Alejandro Cdmara, and Martin J.
Bastiaans discuss the application of linear canonical transformations to the modeling
of light propagation through paraxial optical systems. Complementarily, M. Alper
Kutay, Haldun M. Ozaktas, and José A. Rodrigo consider the use of simple optical
systems for implementing linear canonical transformations, both in one and two
variables in Chap. 6. The second part of the book focuses on practical aspects
of the numerical implementation of linear canonical transformations. In Chap. 7,
Figen S. Oktem and Haldun M. Ozaktas discuss the degrees of freedom involved in
the implementation of a linear canonical transformation. The effects of sampling
and discretization of linear canonical transformations are presented by John J.
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Healy and Haldun M. Ozaktas in Chap. 8. Markus Testorf and Brian Hennelly
investigate in Chap. 9 the effect known as self-imaging in systems described by
linear canonical transformations. This part concludes with a discussion by Aykut
Kog¢ and Haldun M. Ozaktas in Chap. 10 about fast computational implementations
of linear canonical transformations. The third and final part of the book is devoted to
applications. This part opens with a study in Chap. 11 by Unnikrishnan Gopinathan,
John Healy, Damien P. Kelly, and John T. Sheridan of the connection between
linear canonical transformations and the retrieval of the phase of a field from the
knowledge of its intensity. In Chap. 12, Damien P. Kelly and John T. Sheridan
discuss the application of these transformations in digital holography. Applications
to signal encryption are presented in Chap. 13 by Pramod Kumar, Joby Joseph and
Kehar Singh. Steen G. Hanson, Michael L. Jakobsen and Harold T. Jura explore the
use of these transformations for speckle metrology in Chap. 14. Lastly, the use of
linear canonical transformations in quantum optics is presented by Gabriel F. Calvo
and Antonio Picén.

This volume will be a very useful reference for specialists working in the fields
of optical system design and modeling, image and signal processing, and quantum
optics, to name a few. It will also be a great resource for graduate students in physics
and engineering, as well as for scientists in other areas seeking to learn more about
this important yet relatively unfamiliar class of integral transformations.

The Institute of Optics Miguel A. Alonso
University of Rochester
Rochester, New York



Preface

Linear canonical transforms (LCTs) are a three-parameter family of linear integral
transformations, which have a quadratic-phase kernel. For this reason, they have
also been called quadratic-phase transforms or quadratic-phase systems (as well as
other names). They are unitary transforms that correspond to linear, area-preserving
distortions in phase space, a fact which underlies certain invariance properties.
Combinations of LCTs are again LCTs. The family includes important operations
or transforms such as chirp multiplication, chirp convolution (Fresnel transforms),
fractional Fourier transforms, and of course the ordinary Fourier transform, as
special cases. Arbitrary LCTs can be written as combinations of these simpler
transforms. This leads to fast algorithms for approximately calculating LCTs, much
as the ordinary Fourier transform can be calculated with fast algorithms.

LCTs have been rediscovered many times in different contexts, a fact we consider
evidence of their ubiquity. Their significance in optics was recognized at least as
early as the 1970s. Later, interest in the fractional Fourier transform during the
1990s led to renewed interest in LCTs from new perspectives.

This book deals with LCTs primarily from the perspective of signal and image
processing, and optical information processing. Part I presents the mathematical
theory of LCTs in the style of signal theory and analysis, as well as the foundations
of how LCTs are related to optical systems. Part II deals with issues of degrees
of freedom, sampling, numerical implementation, and fast algorithms. Part III is
a survey of various applications. No attempt is made here to discuss canonical
transformations as they appear in classical Hamiltonian mechanics and symplec-
tomorphisms. These are well-established subjects in physics. However, we note that
it is quite possible that a crossover of concepts and techniques between the different
approaches to these transforms may be quite fruitful, and we hope this book may
contribute to that end, in addition to being useful for its primary audience in the
areas of signal processing and optics.



X Preface
Overview

The opening chapters cover a range of fundamental topics. We start with a
discussion of the twin discovery of LCTs in two different areas: paraxial optics
and nuclear physics. This provides a fascinating window into more than 40 years
of parallel scientific progress. This chapter also contrasts two parallel efforts to
define a discrete counterpart to the LCTs—one based on group theory, the other
on sampling theory. Chapter 2 provides a self-contained introduction to LCTs and
their properties, so the reader who just wishes to dip into the subject may be advised
to start here. Chapter 3 discusses the eigenfunctions of the LCTs. These functions
are important for analyzing the characteristics of the transforms. Since the LCT
can be used to describe wave propagation, they also play important roles in the
analysis of self-imaging and resonance phenomena. Chapter 4 continues the theme
of key properties of the transform with a discussion of the uncertainty principle.
Heisenberg’s principle provides a lower bound on the spread of signal energy in the
time and frequency domains, and there has been a good deal of work on extending
this work to LCTs. The first part of the book is rounded out by Chaps. 5 and 6 that
discuss the relationship of LCTs to optics. These chapters deal with both how LCTs
can be used to model and analyze optical systems and how LCTs can be optically
implemented.

The modern age is digital, whether we are working with spatial light modulators
and digital cameras or processing the resulting signals with a computer. In the
second part of the book, we have a number of chapters on topics relevant to
discrete signals and their processing. Chapter 7 discusses a modern interpretation
of the relationship between sampling and information content of signals. Chapter 8
discusses sampling theory and builds up to a discrete transform. Periodic gratings
have long been known to produce discrete signals at certain distances, and in Chap. 9
this Talbot effect and hence the relationship between discrete and periodic signals
are examined. Just as the fast Fourier transform is key to the utility of conventional
spectral analysis, corresponding fast algorithms are critical to our ability to use
LCTs in a range of applications. Chapter 10 examines how to calculate the LCT
numerically in a fast and accurate fashion.

In the final part of the book, we turn to a series of chapters in which linear
canonical transforms are used in a variety. of optical applications. One of the
fundamental problems in optics is that our detectors are insensitive to phase. Chapter
11 discusses phase retrieval from the field intensity captured in planes separated by
systems that can be described using LCTs, focusing particularly on non-iterative
techniques. Another way to find the full wave field (amplitude and phase) is to
record a hologram, a topic which experienced a revival in the past 20 years due
to the rapid improvement in digital cameras. Digital holography is the focus of
Chap. 12. Chapter 13 examines optical encryption by means of random phase
encoding in multiple planes separated by systems that may be described using LCTs.
Coherent light reflected from a rough surface develops laser speckle, a characteristic
of the wave field, which may be beneficial in metrology or a nuisance in display
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technologies. Chapter 14 examines complex-parametered LCTs as a means of
modelling speckle fields propagating through apertured optical systems. With Chap.
15, the book is rounded off with a discussion of the use of LCTs in quantum optics.

Dublin, Ireland John J. Healy
Ankara, Turkey M. Alper Kutay
Ankara, Turkey Haldun M. Ozaktas

Dublin, Ireland John T. Sheridan
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Chapter 1

Development of Linear Canonical Transforms:
A Historical Sketch

Kurt Bernardo Wolf

Abstract Linear canonical transformations (LCTs) were introduced almost
simultaneously during the early 1970s by Stuart A. Collins Jr. in paraxial optics, and
independently by Marcos Moshinsky and Christiane Quesne in quantum mechanics,
to understand the conservation of information and of uncertainty under linear maps
of phase space. Only in the 1990s did both sources begin to be referred jointly in
the growing literature, which has expanded into a field common to applied optics,
mathematical physics, and analogic and digital signal analysis. In this introductory
chapter we recapitulate the construction of the LCT integral transforms, detailing
their Lie-algebraic relation with second-order differential operators, which is the
origin of the metaplectic phase. Radial and hyperbolic LCTs are reviewed as unitary
integral representations of the two-dimensional symplectic group, with complex
extension to a semigroup for systems with loss or gain. Some of the more recent
developments on discrete and finite analogues of LCTs are commented with their
concomitant problems, whose solutions and alternatives are contained the body of
this book.

1.1 Introduction

The discovery and development of the theory of linear canonical transforms (LCTs)
during the early seventies was motivated by the work on two rather different
physical models: paraxial optics and nuclear physics. The integral LCT kernel was
written as a descriptor for light propagation in the paraxial régime by Stuart A.
Collins Jr., working in the ElectroScience Laboratory of Electrical Engineering at
Ohio State University. On the other hand, Marcos Moshinsky and his postdoctoral
associate Christiane Quesne, theoretical physicists at the Institute of Physics of
the Universidad Nacional Auténoma de México, while working among other
problems on the alpha clustering and decay of radioactive nuclei, saw LCTs as

K.B. Wolf (i4)

Instituto de Ciencias Fisicas, Universidad Nacional Auténoma de México,
Av. Universidad s/n, Cuernavaca, Morelos 62251, México
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