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Preface to the Second Edition

In this second enlarged edition we have supplemented the chapters on geometric
phases. We have also added a new chapter on anyon physics in planar electro-
dynamics. Finally we have corrected some minor typographical errors. One of us
(W.D.) wants to thank the “Volkswagen-Stiftung” for its generous financial sup-

port during his Sabbatical in the U.S., where the present improved version took
shape.

Tiibingen and Hamburg Walter Dittrich
October 1993 Martin Reuter



Preface to the First Edition

This volume is the result of the authors’ lectures and seminars given at Tiibingen
University and elsewhere. It represents a summary of our learning process in non-
linear Hamiltonian dynamics and path integral methods in nonrelativistic quantum
mechanics. While large parts of the book are based on standard material, readers
will find numerous worked examples which can rarely be found in the published
literature. In fact, toward the end they will find themselves in the midst of mod-
ern topological methods which so far have not made their way into the textbook
literature.

One of the authors’ (W.D.) interest in the subject was inspired by Prof. D. Judd
(UC Berkeley), whose lectures on nonlinear dynamics familiarized him with Lich-
tenberg and Lieberman’s monograph, Regular and Stochastic Motion (Springer,
1983). For people working in plasma or accelerator physics, the chapter on non-
linear physics should contain some familiar material. Another influential author has
been Prof. J. Schwinger (UCLA); the knowledgeable reader will not be surprised
to discover our appreciation of Schwinger’s Action Principle in the introductory
chapters. However, the major portion of the book is based on Feynman’s path
integral approach, which seems to be the proper language for handling topological
aspects in quantum physics.

Our thanks go to'Ginny Dittrich for masterly transforming a long and complex
manuscript into a readable monograph.

Titbingen and Hannover Walter Dittrich
January 1992 . Martin Reuter
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Introduction

The subject of this monograph is classical and quantum dynamics. We are ful-
ly aware that this combination is somewhat unusual, for history has taught us
convincingly that these two subjects are founded on totally different concepts; a
smooth transition between them has so far never been made and probably never
will,

An approach to quantum mechanics in purely classical terms is doomed to
failure; this fact was well known to the founders of quantum mechanics. Never-
theless, to this very day people are still trying to rescue as much as possible of
the description of classical systems when depicting the atomic world. However,
the currently accepted viewpoint is that in describing fundamental properties in
quantum mechanics, we are merely borrowing names from classical physics. In
writing this book we have made no attempt to contradict this point of view. But in
the light of modem topological methods we have tried to bring a little twist to the
standard approach that treats classical and quantum physics as disjoint subjects.

The formulation of both classical and quantum mechanics can be based on the
principle of stationary action. Schwinger has advanced this principle into a pow-
erful working scheme which encompasses almost every sitation in the classical
and quantum worlds. Our treatment will give a modest impression of the wide
range of applicability of Schwinger’s action principle.

We then proceed to rediscover the importance of such familiar subjects as Ja-
cobi fields, action angle variables, adiabatic invanants, etc. in the light of current
research on classical Hamiltonian dynamics. It is here that we recognize the im-
portant role that canonical perturbation theory played before the advent of modern
quantum mechanics.

Meanwhile, classical mechanics has been given fresh impetus through new
developments in perturbation theory, offering a new look at old problems in non-
linear mechanics like, e.g., the stability of the solar system. Here the KAM theorem
proved that weakly disturbed integrable systems will remain on invariant surfaces
(tori) for most initial conditions and do not leave the tori to end up in chaotic
motion.

At this stage we point to the fundamental role that adiabatic invariants played
prior to canonical quantization of complementary dynamical variables. We are
reminded of torus quantization, which assigns each adiabatic invariant an integer
multiple of Planck’s constant. All these semiclassical quantization procedures have
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much in common with Feynman’s path integral or, rather, approximations thereof.
Indeed, Feynman’s path integral methods are ideally suited to follow a quantum
mechanical system — if certain restrictions are enforced ~ into its classical realm.
Consequently it is one of our main goals to apply Feynman’s path integral and
other gcometrical methods to uncover the mystery of the zero point energy (Maslov
anomaly) of the quantum harmonic oscillator.

That quantum and classical mechanics are, in fact, disjoint physical worlds was
clear from the very beginning. Present-day experience is no exception; it is rather
embarrassing to find out that an important geometric phase in a cyclic adiabatic
quantal process has been overlooked since the dawn of quantum mechanics. This
so-called Berry phase signals that in nonrelativistic as well as relativistic quantum
theory, geometrical methods play an eminent role.

The appearance of topology in quantum mechanics is probably the most im-
portant new development to occur in recent years. A large portion of this text is
therefore devoted to the geometric structure of topologically nontrivial physical
systems. Berry phases, Masiov indices, Chemn-Simons terms and various other
topological quantities have clearly demonstrated that quantum mechanics is not,
as of yet, a closed book.



1. The Action Principles in Mechanics

We begin this chapter with the definition of the action functional as time mlcgral
over the Lagrangian L(g;(t), ¢:(t);t) of a dynamical system:

t2
S{lgi®kti,t2} = [ dt L(gi(1), () ) - (11
t
Here, ¢i, i = 1,2,..., N, are points in N-dimensional configuration space. Thus
¢i(t) describes the motion of the system, and ¢;(¢) = dg;/dt determines its velocity
along the path in configuration space. The endpoints of the trajectory are given by
gi(th) = g1, and ¢;(t2) = qia.

Next we want to find out what the actual dynamical path of the system is. The
answer is contained in the principle of stationary action: in response to infinitesimal
variation of the integration path, the action S is stationary, 6S = 0, for variations
about the correct path, provided the initial and final configurations are held fixed.
On the other hand, if we permit infinitesimal changes of g(¢) at the initial and
final times, including alterations of those times, the only contribution to éS comes
from the endpoint variations, or

§S=G(t)) — G(ty) . (12)

Equation (1.2) is the most general formulation of the action principle in mechanics.
The fixed values Gy and G, depend only on the endpoint path variables at the
respective terminal times.

Again, given a system with the action functional S, the actual time evolution
in configuration space follows that path about which general variations produce
only endpoint contributions. The explicit form of G is dependent upon the special
representation of the action principle. In the following we begin with the one that
is best known, i.e.,

1) Lagrange: The Lagrangian for a point particle with mass m, moving in a
potential V(z;, 1), is

L(zi,tit) = %sc% ~Vizb). (13)

Here and in the following we restrict ourselves to the case N = 3; i.e., we describe
the motion of a single mass point by z;(¢) in real space. The dynamical variable
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z,(t) denotes the actual classical trajectory of the particle which is parametrized
by t with t) <t < t,.

Now we consider the response of the action functional (1.1) with respect to
changes in the coordinates and in the time, 8z;(t) and 6t(¢), respectively. It is

important to recognize that, while the original trajectory is being shifted in real
space according to

z;(t) - zi(t") = z;(1) + bzi(2) 14

the time-readings along the path become altered locally, i.e., different at each
individual point on the varied curve — including the endpoints. This means that
our time change is nor a global (6¢(t) = const.) rigid time displacement, equally
valid for all points on the trajectory, but that the time becomes changed locally,

or, shall we say, gauged, for the transported trajectory. All this indicates that we
have to supplement (1.4) by

t— () =t +6t(), (1.5)

where the terminal time changes are given by 6i(t;) = ¢, and 6t(t)) = 6t;.
To the time change (1.5) is associated the change in the integration measure
in (1.1) given by the Jacobi formula

d(t + 6t) d _

d(t +8t) = S dt = (1 + 6t(t)) dt (1.6)
or

6(dt) = d(t + 6t) — dt = dt% 6(t) . ' (1.7)

If the time is not varied, we write &g instead of §; i.c., fgt = 0 or [§,d/dt] = 0.
The variation of z;(¢) is then given by

Szi(t) = boxi(t) + 6t (1.(t)) (1.8)
since up to higher order terms we have
83i(t) = 24(t") — z4(t) = zl(t + 68) — zi(t) = 2I(t) + 6¢ d" (‘) — z2,2)
dz; dz
: = 501,'(!) + §t—5
Similarly,
6z:(t) = boi () + 6t% z; 1.9

,o.od o . d
= fox; + E(&tx,) - I'EE (6t)

d d . d d
=% (60+6ta) z;— xidt (62,) I'dt 6t . (1.10)
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5

The difference between § and & acting on ¢, z(¢) and z;(t) is expressed by the

identity
d
=6+ 6t—d; .

So far we have obtained
Ly —sedk

t2 t2 d
58S = (&(dt)L + dté L] = / dt LE(&) +5L

1 t

(1.1n

[}]
=/ dt [%(L&)*» (6L 6t—)] / dt [——(L&t)+ 60L] (1.12)
H

since, according to (1.11) we have

6L=60L+6tiL. (1.13)
dt
The total variation of the Lagrangian is then given by
6L = 60L+6t d 6oz. L 6055.- +6t%£
oL 6L oL oL 6L
_6_1:,-601' a 601,+6t<01l I,+a at)
_ 0oL d\ oL d oL
"oz (60+6tdt> 5t B, (6°+6tdt) Bty
oL oL 8L
= -5;: Sz + az — 8+ — at 6t .
Now we go back to (1.3) and substitute
oL _ 9V(zi,t) oL ) oL _ ov
%" om o or TV W e (1.14)
so that we obtain, with the aid of (1.10):
v v d o d
6L——Eét— a—xi&t,+mz,dt 5.1:.-—m:c%:{; ot . (1.15)
Our expression for 65 then becomes
@ d v av d
6S = A dt [miia éz; — -5;‘ ot — 8_1:. 6?,’ + (L(t) — mxf);t &] . (1.16)

We can also write the last expression for 65 a blt differently, thereby prcscrmng

explicitly the coefficients of éz; and ét:
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@ (gl dr; m (dz;\}
6S= ‘/‘; dt {z [m—d't— 61,‘ - (7 (W) +V) 5t]

d?z; ov v d |m [dz; 2
m—at—z- bz; — -a_:t.'ézi —Est'F&E [7 (I) +V]} , (1.17)

or with the definition

aL dz;\? v
E-aTIi-L- 2 (.d_t-) +V(z;,t), (1.18)
6§ = / dt d [mg—'&:. Eét]

d*z; oV dE aV
+/“ .dt [-—61},‘ (mmz— + -5;—') + 6t ( i 6t )] . (119)

Since §z; and §t are independent variations, the action principle 6S = G, — G,
implies the following laws:

dzz,‘ 6V(1‘.’, t) .

bz;: m T = _T , (Newton) ; (1.20)
i.e., one second-order differential equation.
dE 8V '
D— = 1.21
& a o’ : (1.21)

so that for a static potential, V' /3t = 0, the law of the conservation of energy
follows: dE/dt = 0.

Surface term: G = m% éz; — E&t. (1.22)
2) Hamiltonian: As a function of the Hamiltonian,
ne B .
H(xlvplvt)-——+v(xl»t)v (123)
2m

the Lagrangian (1.3) can also be written as (p; := dL/0z,):

L= p.dd L H(zi,pist) . (1.24)

Here, the independent dynamical variables are z; and p;; ¢ is the independent
time-parameter variable. Hence the change of the action is

t dz.'
6S=¢§ " dt[ iTit—"H(ziapirt)]
t

d dzi d
= /; [p'dt bz, + dt ép; —6H—H‘—1;5t] . (1.25)
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Upon using

8H . 0H OH
§H = (6:: a4 5o sp,) + o0t (1.26)

where, according to (1.23): 9H/9z; = 8V /0z; and OH /3p; = p;/m, we obtain

t2 d
68 = / di—[piba; — Hét]

dp; OV dz; pi dH OH
'/:l (\1t [—61, (dt 32.) + &p; (71—1- - m) + 6t (dt - -51—)] . 1.2n

The action principle 6S = G2 — G then tells us here that

L des _8H _p
6Pl . dt = Bp, = m ] (128)
bz i OH_ OV (1.29)

dH OH
&t : R (1.30)
Surface term : G = p;bz; — Hét . (1.31)
Let us note for later use:
6S=G, -G, = [p,'(SI,’ - H(St]tz - [p;éz; - H&t](‘ . (1.32)
Compared with (z; = {z~(t1)} z3 = {zi(t2)}; 1= 1,2,3)
oS as as
6S = -6-—61:1 + — 925 6zz+ o 6t; + = at bty (1.33)
(1.32) yields
s oS
2| gl H(zl,Phtl)-y‘ (1.34)
or
oS a8 i
H(m.—a;,h) —'671—0 (1.35)
In the same manner, it follows that:
as aS as
;= 35 H (Iz, B2y tz) 5, =0. (1.36)

Obviously, (1.35) and (1.36) are the Hamilton-Jacobi equations for finding the
action S. In this way we have demonstrated that the action (1.1) satisfies the
Hamilton-Jacobi equation. (Later on we shall encounter S again as the generating
function of a canonical transformation (g;, p;) — (Q;, P;) of the Fi(qi, @i, t)-type.
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3) Euler-Maupertuis (Principle of Least Action): This principle follows from
the Lagrangian representation of the action principle:

h dz; 2
6§ = 6/ dtL= [m——‘ bz — Eét] , (1.37)
n dt 1
if we inroduce the following restrictions:
a) L should not be explicitly time dependent; then the energy E is a conserved
quantity both on the actual and the varied paths; b) for the varied paths, éz;(t)
should vanish at the terminal points: §x(t12) = 0. What remains is

t2
6/ dt L = ~E(6ty — 6t1) . (1.38)
13
But under the same restrictions we have, using (1.18),
{2 t2
/ de=/ 2L i By 1), (1.39)
t 4 o,
the variation of which is given by
f b 9L
6/ dtL=6/ dt— &, — E(6ty — 6t1) . (1.40)
t t 31',-

Comparing (1.40) with (1.38), we get, taking into consideration p; := 9L /0z;:
f dr; »
) dt pi— =0 1.41
/ g (1.41)
If, in addition, we assume the potential to be independent of the velocity, i.e., that
oT

=2 .
7, z;,=2T, (1.42)
then (1.41) takes on the form
2
) dtT=0, (1.43)
1
or
t
/ dt T = Extremum. (1.44)
t

Thus the Euler-Maupertuis Principle of Least Action states: The time integral of
the kinetic energy of the particle is an exreme value for the path actually selected
compared to the neighboring paths with the same total energy which the particle
will ravel between the initial and final position at any time — ¢ is varied! This
variation in time can aiso be expressed by writing (1.43) in the form [see also

(1.7
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7] t d
5/ dtT=/ dt (T-5t+5T)‘ (1.45)
4 " dt

In N-dimensional configuration space, (1.41) is written as

/'2 Z i (1.46)

=1

or
J/ Zp,dq.— } (1.47)
=1

If we parametrize the path in configuration space between 1 and 2 using the
‘parameter 9, then (1.47) is written

/ ‘l”‘ d0=0. (1.48)
N

i-l

On the other hand, it follows from the Hamiltonian version of the action principle
in its usual form with vanishing endpoint contributions §¢;(¢12) =0, 6t(t;2) =0
in 2N -dimensional phase space:

N dq,
8 dt Zp, =0 (1.49)

f i=1

One should note the different role of 6§ in (1.46) — the time is also varied — and
&, which stands for the conventional virtual (timeless) displacement.
With the parametrization ¢ in (1.49), the expression

N
; dﬂ[zp,d"' ‘“] 0 (1.50)
0

can, by introducing conjugate quantities,

gna =t, pna=-—H, (1.51)
be reduced formally to a form similar to (1.48):

e N4l dg;

5], Y _pigg dd=0. (1.52)

i=l

Besides the fact that in (1.52) we have another pair of canonical variables, the
different roles of the two variation symbols § and § should be stressed. § refers
to the paths with constant H = E, whereas in the § variation, H can, in principle,
be any function of time. & in (1.52) applies to 2N + 2-dimensional phase space,
while 6 in (1.48) applies to configuration space.
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If, in the case of the principle of least action, no external forces are involved,
i.e., we set without loss of generality V = 0, then E as well as T are constants.
Consequently, the Euler-Maupertuis principle takes the form

— :

) dt =0= 6t — 8ty , (1.53)

t
ie., thé time along the actual dynamical path is an extremum.

At this point we are reminded of Fermat’s principle of geometrical optics: A
light ray selects that path between two points which takes the shortest time 0
travel.

Jacobi proposed another version of the principle of least action. It is always
useful when one wishes to construct path equations in which time does not appear.

We derive this principle by beginning with the expression for the kinetic energy
of a free particle in space:

3
1 d.’l,‘,' dJ:k
= et Beind. ] .54
3 mi Tl (1.54)

i k=1

T

wheére m;; are the elements of the mass tensor, e.g. m;; = mé;;.
In generalized coordinates in N-dimensional configuration space, we then have

_ 1(ds)?
5@ (1.55)
with the line element
N
s = 3" mala, @, -, qN)dgidgs (1.56)
i k=1 .

and position-dependent elements m; for example, from

m (dr)? + r2(d9)? + (dz)?
=7 (@2 (150

we can immediately see that

. m 0 0
m=<0 mr? 0).
0 0 m

The m;; take over the role of the metric tensor in configuration space. At this
point mechanics becomes geometry.

Writing (1.55) in the form dt = ds//2T we can restate (1.43) as

2 2
5/ dtT=0=6/ dsVT . (1.58)
i 1

Here, we substitute 7 = H — V(g;) to obtain Jacobi’s principle:



