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PREFACE

This text offers a self-contained exposition of the cohomology of differential
forms, de Rham cohomology, and of its application to characteristic classes
defined in terms of the curvature tensor. The only formal prerequisites are
knowledge of standard calculus and linear algebra, but for the later part of the
book some prior knowledge of the geometry of surfaces, Gaussian curvature, will
not hurt the reader.

The first seven chapters present the cohomology of open sets in Euclidean spaces
and give the standard applications usually covered in a first course in algebraic
topology, such as Brouwer’s fixed point theorem, the topological invariance of
domains and the Jordan—Brouwer separation theorem. The next four chapters
extend the definition of cohomology to smooth manifolds, present Stokes’ the-
orem and give a treatment of degree and index of vector fields, from both the
cohomological and geometric point of view.

The last ten chapters give the more advanced part of cohomology: the
Poincaré-Hopf theorem, Poincaré duality, Chern classes, the Euler class, and
finally the general Gauss-Bonnet formula. As a novel point we prove the so
called splitting principles for both complex and real oriented vector bundles.
The text grew out of numerous versions of lecture notes for the beginning course
in topology at Aarhus University. The inspiration to use de Rham cohomology as
a first introduction to topology comes in part from a course given by G. Segal at
Oxford many years ago, and the first few chapters owe a lot to his presentation
of the subject. It is our hope that the text can also serve as an introduction to the
modern theory of smooth four-manifolds and gauge theory.

The text has been used for third and fourth year students with no prior exposure
to the concepts of homology or algebraic topology. We have striven to present
all arguments and constructions in detail. Finally we sincerely thank the many
students who have been subjected to earlier versions of this book. Their comments
have substantially changed the presentation in many places.

Aarhus, January 1996
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1. INTRODUCTION

It is well-known that a continuous real function, that is defined on an open set of
R has a primitive function. How about multivariable functions? For the sake of
simplicity we restrict ourselves to smooth (or C°°-) functions, i.e. functions that
have continuous partial derivatives of all orders.

We begin with functions of two variables. Let f:U — R? be a smooth function
defined on an open set of R2.

Question 1.1 Is there a smooth function F: U — R, such that

oF oF
—_— —_— = ?
1) e f1 and e f2, where f = (fy, f2)
Since
o*F O*F

32201, 01,07,

we must have

h _ of

axz - a—xl

0))

The correct question is therefore whether F' exists, assuming f = (f}, fo) satisfies
(2). Is condition (2) also sufficient?

Example 1.2 Consider the function f:R? — R2 given by

f(xl,x2)=( —2 d )

z? + 22’ 12 + 22

It is easy to show that (2) is satisfied. However, there is no function F: R2—{0} —
R that satisfies (1). Assume there were; then

2%
/ %F(cos 6, sin8)d6 = F(1,0) — F(1,0) = 0.
0
On the other hand the chain rule gives

d . dF . OF
d—oF(cos 8, sinf) = e (~sin ) + vl cosd
= ~fi(cos ¥, sinf) - sinf + fy(cos b, sind) - cosd = 1.

This contradiction can only be explained by the pon-existence of F.

PIAGG2.



2 1. INTRODUCTION

Definition 1.3 A subset X C R" is said to be star-shaped with respect to the
point z9p € X if the line segment {tzo + (1 — t)z|t € [0,1]} is contained in X
for all z € X.

Theorem 1.4 Let U C R? be an open star-shaped set. For any smooth function
(f1, f2): U — R? that satisfies (2), Question 1.1 has a solution.

Proof. For the sake of simplicity we assume that z5 = 0 € R2. Consider the
function F : U — R,

1
F(z1,z3) =/0 [z1fi(tz1, txe) + 22 fa(tzy, txo)]dt.

Then one has

oF 1 afi dfs
'671(1‘1,-'172) = /o [fl(t:zl, tzg) + txlgl-(txl, try) + t:cga(txl,txg) dt
and
d a le)
Etfl(txl, tra) = fi(tzy,tzg) + txla—f:i (tz1,tze) + tzg—éi—;(txl,txz).

Substituting this result into the formula, we get

oF _[']d of2 f
a—zl(xl,.'l:z) = ‘/0‘ [Etfl(tzl, tmz) + txq (82:1 (t.’L‘l, t:rz) 2y (t.’l:l, t:l:g)) dt

= [th(tz1, tz2)]lg = fr(z1,22).

Analogously, ?FF; = faz1, 22).

Example 1.2 and Theorem 1.4 suggest that the answer to Question 1.1 depends
on the “shape” or “topology” of U. Instead of searching for further examples or
counterexamples of sets U and functions f, we define an invariant of U, which tells
us whether or not the question has an affirmative answer (for all f), assuming
the necessary condition (2).

Given the open set U C R?, let C® (U, R*) denote the set of smooth functions
¢:U — RE. This is a vector space. If k = 2 one may consider ¢: U — RF as
a vector field on U by plotting ¢(u) from the point u. We define the gradient
and the rotation

grad: C*(U,R) — C®(U,R?),  rot: C®°(U,R?) — C™(U,R)

by

2 0¢

- _0¢1 0O¢2
grad (¢) = (3—1:1’62:2)’ rot (¢, ¢g) = —L — T2

31‘2 ox 1



1. INTRODUCTION 3
Note that rot o grad = 0. Hence the kernel of rot contains the image of grad,
Ker(rot) = Kernel of rot
Im(grad) = Image of grad

Since both rot and grad are linear operators, Im(grad) is a subspace of Ker(rot).
Therefore we can consider the quotient vector space, i.e. the vector space of
cosets a + Im(grad) where a € Ker(rot):

3) HY(U) = Ker(rot)/Im(grad).

Both Ker(rot) and Im(grad) are infinite-dimensional vector spaces. It is remark-
able that the quotient space H!(U) is usually finite-dimensional.

We can now reformulate Theorem 1.4 as
@) H 1(U ) =0 whenever U C RZis star-shaped.

On the other hand, Example 1.2 tells us that H1(R? — {0}) # 0. Later on we shall
see that H!(R2? — {0}) is 1-dimensional, and that H' (R2—U£°=1 {z:}) = R*. The
dimension of H(U) is the number of “holes” in U.

In analogy with (3) we introduce

5) H°(U) = Ker(grad).

This definition works for open sets U of R* with k& > 1, when we define

() = (o )

oz’ " 9z,

Theorem 1.5 An open set U C R is connected if and only if HO(U) = R.

Proof. Assume that grad(f) = 0. Then f is locally constant: each zg € U has
a neighborhood V'(zo) with f(z) = f(z¢) when z € V(zo). If U is connected,
then every locally constant function is constant. Indeed, for zo € U the set

{z € Ulf(z) = f(z0)} = £~ (f(20)).

is closed because f is continuous, and open since f is locally constant. Hence
it is equal to U, and H(U) = R. Conversely, if U is not connected, then there
exists a smooth, surjective function f:U — {0,1}. Such a function is locally
constant, so grad(f) = 0. It follows that dimH°(U) > 1. O

The reader may easily extend the proof of Theorem 1.5 to show that dimHO(U)
is precisely the number of connected components of U.



4 1. INTRODUCTION

We next consider functions of three variables. Let U C R3 be an open set. A real
function on U has three partial derivatives and (2) is replaced by three equations.
We introduce the notation
grad: C*(U,R) — C* (U, R?)
rot: C*(U,R?) — C*>(U,R?)
div: C*(U,R3) — C®(U,R)
for the linear operators defined by
_(9f of @ of
grad (f) = (6.7:1 6:::2 61:3
3f3 df2 Ofr 3f3 ofa afl)
_ 3f 1 3f2 Ofs
div (f1, f2, f3) = 6z2 + o

Note that rot o grad = 0 and d1v orot = 0. We define H°(U) and set H(U)
as in Equations (3) and (5) and

(6) H*(U) = Ker(div)/Im(rot).

Theorem 1.6 For an open star-shaped set in R® we have that HO(U) =
HYU) = 0 and H*(U) = 0.

Proof. The values of Ho(U) and H(U) are obtained as above, so we shall
restrict ourselves to showing that H2(U) = 0. It is convenient to assume that U
is star-shaped with respect to 0. Consider a function F : U — R3 with divF = 0,
and define G : U — R3 by

1
= / (F(tx) x tx)dt
0
where x denotes the cross product,
e1 fi =
(f1, fa, f3) x (z1,22,23) = |e2 f2 =2
es f3 =3

= (f2z3 — f3z2, faz1 — fiz3, [iza — faz1).
Straightforward calculations give

rot(F(tx) x tx) = %(tzF(tx)).

Hence 1
rotG(x) = / ad?(tzF(tx))dt = F(x). O
0

If U C R? is not star-shaped both H'(U) and H2(U) may be non-zero.
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Example 1.7 Let S = {(z1, z2,23) € R®|z} + 2} = 1,23 = 0} be the unit circle
in the (zj,z2)-plane. Consider the function
f(zl’ x2, I3)
—2z173 —22213 2 +22 -1 )
k] 2 2
z3 + (2} + 2% - 1)2 i+ (a2 +23-1)" 22+ (22 +22-1)

on the open set U = R3 — S.

One finds that rot(f) = 0. Hence f defines an element [f] € H(U). By
integration along a curve < in U, which is linked to S (as two links in a chain),
we shall show that [f] # 0. The curve in question is

y(t) = (\/1+cost,0,sint), - <t

Assume grad(F) = f as a function on U. We can determine the integral of
£ F(v(t)) in two ways. On the one hand we have

/’r_c %F('y(t))dt =F(y(r ~€)) - F(y(—m+¢€)) >0 fore—0
-4

and on the other hand the chain rule gives

SFO) = L0) O + LO0) 150 + HOE) - %O
= sin®t + 0 + cos?t = 1.

Therefore the integral also converges to 2w, which is a contradiction.
Example 1.8 Let U be an open set in R* and X:U — R* a smooth function (a

smooth vector field). Recall that the energy A,(X), of X along a smooth curve
7v:[a,b] — U is defined by the integral

b
Ay(X) = / (X on(t), ¥ (t))dt

where (,) denotes the standard inner product. If X = grad (®) and ®y(a) =
®~(b), then the energy is zero, since

(Xor(®), /(1)) = % B(v(2))

by the chain rule; compare Example 1.2.






2. THE ALTERNATING ALGEBRA

Let V be a vector space over R. A map
f:VxVx...xV =R
k times
is called k-linear (or multilinear), if f is linear in each factor.

Definition 2.1 A k-linear map w:V* — R is said to be alternating if
w(€1,-..,&) = 0 whenever & = £; for some pair ¢ # j. The vector space
of alternating, k-linear maps is denoted by Alt*(V).

We immediately note that Alt¥(V) = 0 if k > dim V. Indeed, let ey, .. ., e, be a
basis of V, and let w € Alt*(V). Using multilinearity,

w(El, v ,fk) = W(Z ’\i,leiy ey Z/\i,lcei) = Z’\Jw(ejn ey ejk)

with Ay = Aj,1... Aj, k. Since k > n, there must be at least one repetition among
the elements e;,,...,e;,. Hence w(ejy,...,e5) = 0.

The symmetric group of permutations of the set {1,...,k} is denoted by S(k).
We remind the reader that any permutation can be written as a composition of
transpositions. The transposition that interchanges i and j will be denoted by (3, 9).
Furthermore, and this fact will be used below, any permutation can be written as a
composition of transpositions of the type (4, i+1), (i,i+1)o(i+1,i+2)o(i,i+1) =
(%, + 2) and so forth. The sign of a permutation:

4)) sign: S(k) — {1},

is a homomorphism, sign(o o 7) = sign(o) o sign(7), which maps every transpo-
sition to —1. Thus the sign of o € S(k) is —1 precisely if o decomposes into a
product consisting of an odd number of transpositions.

Lemma 2.2 Ifw € At*(V) and o € S(k), then
W&y -+ o)) = sign(o)w(ty, .. ., &).

Proof. It is sufficient to prove the formula when ¢ = (4, j). Let

wi,j(&igl) = w(é.la cee $€a e -16,, (R 7{’:)7
with ¢ and ¢’ occurring at positions i and j respectively. The remaining £, € V
are arbitrary but fixed vectors. From the definition it follows that w; ; € Alt2(V).
Hence w; ; (& + £j, & + €5) = 0. Bilinearity yields that wij (&, &) +wi (&5, &) =
0. 4
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Example 2.3 Let V = Rf and ¢; = (&1, -.,&x). The function w(fy,...,&) =
det((&;;)) is alternating, by the calculational rules for determinants.

We want to define the exterior product
A ALtP(V) x AY(V) — AIPTY(V),
When p = ¢ = 1 it is given by (w1 A wz) = wi(§1)wa(€2) — wa(€1)wr(€2).
Definition 2.4 A (p, g)-shuffle o is a permutation of {1,...,p + ¢} satisfying
o(l)<...<o(p) and o(p+1)<...<o(p+q).

The set of all such permutations is denoted by S(p,q). Since a (p, ¢)-shuffle
is uniquely determined by the set {0(1),...,0(p)}, the cardinality of S(p, q) is
(%)

o)

Definition 2.5 (Exterior product) For w; € Alt?(V) and we € Alt?(V), we define

(w1 Aw2)(&1,- -y €pq)
= Z sign(o)un (56(1), e :Ea(p)) T2 (fa(p+1)’ e "EU(P""I))'
o€S(p,q)

It is obvious that w; A ws is a (p + ¢)-linear map, but moreover:

Lemma 2.6 If wy € Alt?(V) and wy € AIt(V) then wy A wp € AltPHI(V),

Proof. We first show that (w1 Aw2)(é1,6a,...,€p+q) = 0 when &1 = £,. We let

() 512 = {0 € S(paq)la(l) = 1,0'(p+ 1) = 2}
(ll) SZI = {0’ € S(pa Q) l 0(1) = 2,0'(p+ 1) = 1}
(i) So = S(p,q) — (S12 U Sa1).

If o € So then either wi(& 1), - -+ &o(p)) OF W2(o(pi1)s - - - y&o(p+q)) IS zero, since
€o(1) = &o(2) OF &o(p+1) = &o(p+2)- Left composition with the transposition
T = (1,2) is a bijection S13 — Sy;. We therefore have

(UJl Aw2) (51’52,---7§p+q) = .
Z Sign(a)wl (Ea(l)a sy Eo(p))w2 (fa‘(p+1)7 cen ’éa(p+q))

0€ES12

- E sign(o)wy (fra(l)a ceey f'ra(p)) Tw2 (fv'a(p+1)) <o f‘ra(p+q))-
0€S12
Since (1) = 1 and o(p+1) = 2, while (1) = 2 and 7o (p+1) = 1, we see that
T0(i) = o(i) whenever i # 1,p + 1. But & = &; so the terms in the two sums

cancel. The case §; = &;4; is similar. Now w; A wq will be alternating according
to Lemma 2.7 below. O
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Lemma 2.7 A k-linear map w is alternating if w(&,, . ..,&) = 0 for all k-tuples
with §; = €i41 for some 1 < i < k— 1L

Proof. S(k) is generated by the transpositions (¢,% + 1), and by the argument
of Lemma 2.2,

w(&l) cee $£i,£i+l’ e )gk) = —'w(£19 cee s£i+1u€i7 v 1£k)-
Hence Lemma 2.2 holds for all o € S(k), and w is alternating. 0O

It is clear from the definition that
(w1 +w)) Aws =wy Aws + Wi Awy
(/\wl) Awg = /\(wl A wz) =wi A dwg
wi A (wa + wp) = wy Aws +wp A wh

for wy,w) € AItP(V) and ws,w) € ALI(V).

Lemma 2.8 Ifuw) € AtP(V) and wa € AltY(V) then wy A ws = (—1)Pws A wy.

Proof. Let 7 € S(p + ¢) be the element with
T =p+1,72)=p+2,...,7(¢) =p+gq
Tg+1)=147(¢+2)=2,...,7(p+q) =p.
We have sign(7) = (~1)". Composition with 7 defines a bijection
S(p.q) > S(g,p); o oor.
Note that
W2(lorays -+ bort@) = w2(loprn)s -+ s o))
w1 (€or(gr1)s - s Eorprg)) = @1(&o)s - -+ Eop))-

Hence

we Awi(€, .., €ptq)

= . sign(@wa(Coq)- 1 &)1 (Eoger)s- -1 Eopre))

o€S(q,p)
= D sign(e)wr(Eorq): - Eor@) et (borga1)s - - Eorpra)
o€S(pg)
= (_l)m Z Sign(a)wl (Eo‘(l)’ LR Eo(p))m (fo’(p+1)a R fa(p-pq))
o€S(p.q)

= (—l)mwl A W2(€1v---a£p+q)- a
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Lemma 2.9 If w; € Alt?(V), we € AltY(V) and w3 € Alt" (V) then

w1 A (w2 A w3) = (w1 A QJ2) A wg.

Proof. Let S(p,q,7) C S(p + q + r) consist of the permutations ¢ with

o(l) <... < a(p),
olp+1)<...<a(p+79),
olp+qg+1)<...<olp+q+7).

We will also need the subsets S(7,¢,7) and S(p, ¢, F) of S(p,q,r) given by

o € 8(p,q,7) <=0 is the identity on {1,...,p} and o € S(p,q,71)
o € S(p,q,7) <=0 is the identity on {p+¢g+1,...,p+q+7}
and o € S(p,q,7).

There are bijections
S(p,q+71)x S(B,4,7) 5 S(p,q,7)i (0,7) > 00T
S(p+q,7) x S(p,q,7) S S(p,q,7); (0,7) > o0,
With these notations we have
[wi A (w2 Aws)](€1s- - -, Eprgr)
= Z sign(0)wi (€o(1)s - -+ o(p)) (W2 A w3) (Eoprrr)s - - - s€o(pratr))

@

aGS(p,q+1‘)
= D sign(e) Y. sign(n) Wil s o)
o€S(p,g+1) TES(P,q,7)

w2(§o“r(p+1)1 TR far(p+q))w3(€¢r'r(p+q+1)’ oo ,ga'r(p+q+r))]
= E [sign(w)w1(€uqtys - - - » Eup)w2(uqpri)s - - - Eulptq))
u€S(p,q,r)
w3(£u(p+q+1)7 cee )fu(p+q+r))]

where the last equality follows from the first equation in (2). Quite analogously

one can calculate [(w1 A wa) A ws](1, . . ., Epsq+r), employing the second equation
in (2).
Remark 2.10 In other textbooks on alternating functions one can often see the
definition
wl/_\w2(€la seey £p+q)
1 . '
=]Tq! Z Slgn(d)(U1 (fa'(l)a e ,fa(p))wz (£a(p+l), feey €a(p+q))'

o€S(p+q)
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Note that in this formula {0(1),...,0(p)} and {oc(p+1),...,0(p+ ¢)} are not
ordered. There are exactly S(p) x S(g) ways to come from an ordered set to the

: . thi 1 x —
arbitrary sequence above; this causes the factor o, 50 wiAws = w1 A ws.

An R-algebra A consists of a vector space over R and a bilinear map u: Ax A4 — A
which is associative, u(a,u(b,c)) = p(u(a,b),c) for every a,b,c € A. The
algebra is called unitary if there exists a unit element for u, 4(1,a) = p(a,1) = a
for all ¢ € A.

Definition 2.11

(i) A graded R-algebra A, is a sequence of vector spaces Az, k = 0,1...,
and bilinear maps u: Ar x A; — Agy; which are associative.
(i) The algebra A, is called connected if there exists a unit element 1 € A4,
and if R — Ao, given by €(r) = r - 1, is an isomorphism.
(iii) The algebra A, is called (graded) commutative (or anti-commutative), if
w(a,b) = (=1)¥u(b,a) for a € A and b € A;.

The elements in A, are said to have degree k. The set Alt*(V') is a vector space
over R in the usual manner:

(wr +w2)(€15- - €k) = w16y -y &k) +wala,. .o, k)
(’\w)(fl)'-"ék)=’\w(£1’--',€k)) A€ER.

The product from Definition 2.5 is a bilinear map from Alt?(V) x AltY(V) to
AltP*I(V). We set Alt°(V) = R and expand the product to Alt°(V) x Alt?(V)
by using the vector space structure. The basic formal properties of the alternating
forms can now be summarized in

Theorem 2.12 Alt*(V') is an anti-commutative and connected graded algebra.[]

Alt*(V) is called the exterior or alternating algebra associated to V.

Lemma 2.13 For 1-forms wy,...,wp € Altl(V),

wi(é1) wi(éa) -+ wi(ép)
wa(€1) wa(ba) -+ walép)

(Wi A Awp)(€y,...,&) =det .
wp(é1) "Jp(€2) e wp(ép)

Proof. The case p = 2 is obvious. We proceed by induction on p. According
to Definition 2.5,
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w1A(wzl\.../\wp)(fh---,fp)

p . ~
= Z (—1)J+lw1(€j)(w2 A.LA wp)<§1, N I ,fp)
i=1

where (£31,... ,éj, ...,&p) denotes the (p — 1)-tuple where &; has been omitted.
The lemma follows by expanding the determinant by the first row. O

Note, from Lemma 2.13, that if the 1-forms wi,...,w, € Alt'(V) are linearly
independent then w; A ... A wp, # 0. Indeed, we can choose elements {; €
V with w;(§;) = 0 for i # j and w;(§;) = 1, so that det(w;(§;)) = 1. Conversely,
if w1,...,wp are linearly dependent, we can express one of them, say w,, as a
linear combination of the others. If w, = 3 f;ll Tiwj, then

p—1

WA Awp_1 Awp = Zr;wl/\---/\wp_l Awi =0,
i=1

as the determinant in Lemma 2.13 has two equal rows. We have proved

Lemma 2.14 For l-forms wy,...,wponV, wi A... Awp # 0 if and only if they
are linearly independent. O

Theorem 2.15 Let ey,...,e, be a basis of V and ¢, ..., €, the dual basis of
AltY (V). Then

{60(1) A 60(2) A...A fa(p)}o_es(p,n_p)
is a basis of AtP(V). In particular

dim AIt?(V) = (d“:v).
Proof. Since €;(e;) = 0 when ¢ # j, and ¢;(e;) = 1, Lemma 2.13 gives
0 if {i1,...,%p} # {J1,.--»Jdp}
AR i f11e++1€5,) = . e (o VP > e
3) e A €, (ejy ej,) {Slgn(a) if {¢1,...,%} = {J1,...,Jp}

Here o is the permutation o(ix) = jx. From Lemma 2.2 and (3) we get

w= E w(ea(l), AN ea(p))ﬁa(l) AN.. A €a(p)
o€S(pyn—p)

for any alternating p-form. Thus €,(;) A ... A €,(,) generates the vector space
Alt?(V). Linear independence follows from (3), since a relation

Z Ao€o() N A€gp) =0, As ER
o€S(p,n—p)

evaluated on (e, (1), - - -, €5(p)) Bives Ay = 0. O



