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INTRODUCTION

The development of molecular biology over the past thirty years has lead to an explosive
growth of knowledge of protein structure and of methods for the design and manufacture of
proteins of almost any desired sequence. While this seemingly opens limitless possibilities for
the engineering of proteins with novel structures and functions, progress is in reality limited by
our inability to predict function from structure, or even structure from sequence. Some progress
in the understanding of protein folding and of the determinants of biological specificity has been
made, but in essence these remain among the major unsolved problems of molecular biology.
Therefore, no contemporary discussion of the subject can give the newcomer to the field a recipe
for making a protein that will do exactly what he wants it to do. The best one can hope for is to
survey the limits of the known in order to chart a few new inroads into the unknown.

The 10th Course of the International School of Pure and Applied Biostructure "PROTEIN
STRUCTURE and ENGINEERING", held at the Ettore Majorana Center in Erice, Italy 19 - 30
June 1989 as a NATO Advanced Study Institute, was organized around three sets of issues:

(1) How is one to know what structures to make?
(2) How can one make them?
(3) What potential applications can be expected?

One might note that at this time only a partial answer to the first question can be given; it is
possible to describe the methods available for the study of structures and their behavior - these
include X-ray diffraction, High Resolution NMR, as well spectroscopic and theoretical methods
for the study of molecular dynamics; it is also possible to cite specific examples in which site-
directed mutants, designed from prior knowledge of the parent structure, have been used to test
various hypotheses about the structure, dynamics, folding or function of a particular protein.
For reasons noted above, it is not yet possible to define any kind of general design or
architectural principles that would be useful in making decisions for the design of proteins with
novel functions at will.

Techniques of genetic engineering have provided many specific answers to the second
question. It would be only a slight overstatement to say that, the limitations of existing methods
notwithstanding, almost any desired protein sequence could be produced at this time, using
existing technology. If the published volume of the proceedings were to accurately reflect the
state of knowledge in the field, description of such techniques and their known use would be the
by far dominant section. The decision of the organizers was however to focus attention on
answering the as yet unanswered questions of rational design and on structural studies that can
allow it. For this reason only a sample of the available preparative methods have been included.



Knowledge of protein design and architectural principles will be necessary to transcend the
narrow limits within which the third question can now be answered. The use of genetic
engineering methods in the manufacture of known proteins for a variety of pharmacological,
agriculwral and industrial uses is a reality, but hardly involves any protein design. For the
present, realistic answers to the question of new applications are limited to modification of
known proteins to endow them with modified and, occasionally, new functions. The recent
work on catalytic antibodies may serve as a prime example. Several other examples can be
found in the present volume. The more bold and speculative suggestions made for stimulating
conversation at the meeting, but did not crystallize in a form fit to print.

While the modification of known proteins may seem as a modest framework, compared to
the limitless opportunities one can imagine, it must be noted that it has a very important role to
play. It can serve to answer the key questions that need to be answered before one could speak
of protein architectural principles and embark on a grand scheme of new protein design: What
contribution does a particular amino acid at a particular point in the sequence make to the stability
of a folded structure - or to the folding pathway? What is its contribution to a specific interaction
with a ligand (be it a substrate, inhibitor or regulator)? The number of combinations to be
considered in any attempt to answer these and related questions is staggering and, despite the
rapidly growing literature, the surface of the problem has barely been scratched.

No single conference and no single volume can aspire to present an encyclopedic review of
the large number of current studies relevant to the subject. At best one can hope to present a
small selection representative of the cutting edge of the field. It is in this spirit that this volume is
offered to the reader.

Oleg JardetzKy
September 29, 1989



EXPLOITATION OF GEOMETRIC REDUNDANCIES AS A SOURCE OF PHASE
INFORMATION IN X-RAY STRUCTURE ANALYSIS OF SYMMETRIC PROTEIN
ASSEMBLIES - Including a worked example: the three-dimensional structure of the icosahedral
Bso capsid of heavy riboflavin synthase from Bacillus subtilis

Rudolf Ladenstein* and Adelbert Bacher®*

*Max-Planck-Institut fiir Biochemie, D-8033 Martinsried & **Institut fiir
Organische Chemie und Biochemie der Technischen Universitidt Miinchen
D-8046 Garching, West Germany

INTRODUCTION
Scope of the Work

The construction of symmetric structures from asymmetric building blocks represents an
important feature of nature and is studied by several disciplines of science from different
viewpoints. In the field of molecular biology the symmetries of complex macromolecules are of
special interest. They constitute the basis for structural organization and biological function in
many cases. Maximum stability in oligomeric macromolecules is usually achieved by arranging
the subunits in a symmetrical manner such that all of the subunits can form equivalent contacts.

During the past decades of research on biological macromolecules evidence has
accummulated that icosahedral symmetry is an important feature which governs the self-
organization of protein monomers in the formation of highly symmetric oligomeric complexes.
The crystallographic work on virus structures is presently revealing the beauty, complexity and
functionality of large macromolecular assemblies (Harrison, 1984; Liljas, 1986). The structure
analytic study on heavy riboflavin synthase described in this paper will show that icosahedral

symmetry may also be of importance for the structural organization of a bifunctional enzyme
complex.

The known symmetries of a complex protein oligomer may very much benefit the
determination of its three-dimensional structure. The well-known Patterson search methods
(Huber, 1985) represent efficient correlation procedures which enable the crystallographer to
extract the symmetry relations among the subunits of a crystalline oligomeric macromolecule
from the crystallographic intensity data alone without prior conditions. The knowledge of these
symmmetries in turn allows one to use the geometric redundancy in the intensity data set of a
- crystalline macromolecule in order to derive new structural information by averaging (Bricogne,
1976) of electron density maps in real space. The applicability of these methods has profitted
from the development of efficient computers with high storage capacity which have made it
possible to treat the vast experimental data in short time and with high accuracy.

The complex structures of highly symmetric protein molecules are fascinating in that they
provide a picture of the immense potential for self-organization inherently present in matter.



Furthermore, the detailed knowledge of the structure of a macromolecular system serves as an
important basis for the deeper understanding of its function. In most cases it will allow the
intelligent planning of investigations with complementary methods, which may provide, together

with the structure data, an insight into the complicated structure-function relations of a
macromolecular assembly. :

Heavy Riboflavin Synthase and Related Macromolecules

Heavy riboflavin synthase (HRS) from Bacillus subtilis is a bifunctional enzyme complex
with a molecular weight of 106 Daltons. It is composed of 60 identical 3 subunits (Mg = 16200)
which form an icosahedral capsid that encloses a trimer of a subunits (M, = 23500, Bacher et
al. 1980). It has been shown by immunochemical methods that the immunological determinants
of the a3 trimers are not accessible for specific antibodies in the native complex 03849 (Bacher et
al., 1980; Bacher et al., 1986). On the basis of electron microscopic data (Bacher et al., 1980)
and X-ray small angle scattering (Ladenstein et al., 1986) a particle diameter of approximately
150 A has been derived. The complex 03B, is stable only in a rather narrow pH region around
pH 7. Dependent on pH and the concentration of specific substrate- and product analogous
ligands (see Fig. 2) disaggregation of the native complex but also reaggregation to stable B¢
aggregates (26 S), which are characterized by a hollow sphere shape, can occur (Bacher et al.,
1986). In the absence of the stabilizing ligands polydisperse mixtures of large [ aggregates are
formed. The dominating species is characterized by an approximate particle diameter of 290 A
Its architecture presumably follows the construction principles of truncated icosahedrons (Bacher

et al., 1986). The well characterized reactions leading to related P subunit assemblies are shown
in Figure 1.

Thus the complex o3¢, represents an ideal system for the study of protein-protein and
protein-ligand interactions and the self-assembly of macromolecular systems with icosahedral
symmetry.

The Catalytic Reaction

The bifunctional complex 03B, catalyzes the final reactions in the biosynthesis of riboflavin
(vitamin B,). Briefly, the B subunits catalyze the condensation of a 3,4 - dihydroxy - butanone 4
- phosphate (1) with 5-amino-6-ribitylamino-2,4 (1H,3H) - pyrimidinedione (2) yielding 6,7-
dimethyl-8-ribityllumazine (3) (Bacher et al., 1978; Neuberger et al., 1986). The subsequent
dismutation of 3 is catalyzed by the o subunits yielding riboflavin (4) and the pyrimidinedione 2
which can be reutilized by the B subunits (Bacher et al.), (Figure 2). The kinetics of the catalytic
steps are incompletely understood.

Crystals of Heavy Riboflavin Synthase

The complex 03¢, could be crystallized from 1.35 M phosphate buffer pH 8.7 in the
presence of 0.5 mM ligand 5 (Ladenstein et al., 1983). The increased pH stability under the
influence of the substrate analogous ligand turned out to be crucial for successful crystallization.
The crystals diffract X-rays to a resolution of 3.3 A and belong to space group P6522 of the
hexagonal system. The unit cell dimensions area =b = 156.4 A, ¢ =298.5 A, o = B = 90°
= 120°. As a consequence of space group symmetry, particle dimensions and threefold particle
symmetry, the particle centers must sit on points with symmetry [32]. Thus the crystalline
packing may be described either by hexagonal densest packing or by packing in hexagonal layers
(Ladenstein et al., 1983). In Figure 3 these two possibilities are shown. By electron
microscopic investigation of freeze-etched 3D-crystals the packing in hexagonal layers could be
verified (Ladenstein et al., 1986).
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Figure 1. Disaggregation and reaggregation of heavy riboflavin synthase (03B); formation of
hollow B4 (26 S) particles.
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Figure 2. Biosynthesis of riboflavin: 1 =34 - dihydroxy - 2 - butanone 4 - phosphate; 2 = 5-
amino-6-(D-ribitylamino)-2,4(1H,3H)—pyrimidinedionc; 3 = 6,7-dimethyl-8-(-ribityl)-
lumazine; 4 = riboflavin.
Inhibitors of heavy riboflavin synthase: 5 = S-nitroso-6-ribitylamino-2,4(1H,3H)-
pyrimidinedione; 6 = 6,7-dioxo-8-ribityl-5,6,7,8-tetrahydrolumazine.



Figure 3. Sphere models showing possible crystalline packing of a3 particles in the
hexagonal unit cell. a) densest hexagonal packing; b) layer packing.

CRYSTALLOGRAPHIC FUNDAMENTALS

Diffraction of X-Rays by a Periodic Object

When a plane wave is scattered by an object, the scattered radiation may be described by the
equation

F(h) = | p(x)-exp2ITihx dx (1]

where F is a complex number which represents the amplitude and phase of the scattered radiation
in a direction determined by the vector h, p(x) is the scattering function at a position x in the
object, and the integral is taken over the volume of the 3D object. For X-ray diffraction, p(x) is
the electron density at position x (excluding the effects of anomalous scattering). Thus the
scattered radiation is described by the Fourier transform of the object as seen by the incident
radiation. By taking the inverse Fourier transform, we get

p(x) = | F(h)-exp-2ITihx dh 2]
The integral is taken over the volume V* of the space spanned by the vector h.

We are interested in the special case in which the scattering object is a 3D crystal. The
fundamental property of a crystal is that p(x) is periodic in all three dimensions of space. Itis
known that the Fourier transform of a periodic function is zero, except when h is an integer
multiple of the periodicity. Thus the structure factors F(h) are zero except on a three-
dimensional lattice, the so-called reciprocal lattice.

The natural coordinate system for a crystal is
x=xa+yb+zc (3]

where a,b,c represent the basis vectors of the unit cell of the crystal. These vectors are not
necessarily orthogonal but they define a three-dimensional space, which is called direct space.
The dimension of direct space is length3 (L3). In turn we may define the space of the structure
factor lattice, which is related to the recorded diffraction pattern, by

h =ha™ +k-b* +1.c* [4]



with the lengths of the basis vectors a*,b*,c* inversely proportional to the lengths of the basis
vectors a,b,c of the unit cell. The space in which the structure factors are defined is generally
called reciprocal space; its dimension is length-3 (L-3).

In evaluation of diffraction experiments it is often necessary to transform a function defined
in reciprocal space into direct space and vice versa. As we have seen these operations can be
performed by Fourier transformation (F) and inverse Fourier transformation (F-1) as

Elp(x)] = F(h) [5]
F-1[F(h)] = p(x).

The Electron Density Function

If we choose a*, b* and ¢* to obey the Laue relations

a-a* =1 ab*=0 ac*=0
b-a* =0 b-b* =1 ce*x =0 {6]
ca*=0 cb*=0 cc*x=1

the vector products in the integrals (1) and (2) simplify to h-x = hx + ky + 1z. With these
definitions we are able to normalize (1) and (2) to reflect the contents of one unit cell; we get

F(h) = V JIf p(x)-exp[2[Ti(hx + ky + 1z)}dxdydz (7]
p(x) = 1/V [f] F(h)-exp[-2ITi(hx + ky + 1z)]dhdkdl [8]

The discrete nature of F(h) allows the conversion from an integral to a sum in Eq. [8]

p(x) = 1/V T F(h)-expl-21Ti(hx +ky + 1z)] (9]
h kil

Equation [9] represents the well-known electron density equation which can be calculated by
inverse Fourier transformation of the scattered waves, described by the structure factors F(h).
The structure factor F(h) is characterized by an amplitude [F(h)l and a phase o(h) according to

F(h) = IF(h)l-expici(h) {10]

The phase information ai(h) is lost in the diffraction experiment; phases are generally determined
by methods such as single (SIR) and multiple (MIR) isomorphous replacement and phase
extension. The amplitudes IF(h)l = const.-\/I(h) are obtained from measurement of the
crystallographic intensities in diffraction patterns (e.g. photographic rotation method (Armndt et
al,, 1977), area detectors (Messerschmidt et al., 1987) and diffractometers (Blundell et al.,
1976). The set of all symmetry independent I(h) represents the unique intensity data set of a

crystal. Crystallographic intensity data of native and derivative crystals of heavy ribo-
flavin synthase are shown in Table 1.

Formal Description of Symmetries

By definition the crystallographic symmetries represent the set of symmetry elements valid
in a crystal; they relate the asymmetric units of the crystal cell. The noncrystallographic or local
symmetry elements are confined to the asymmetric unit and can be described by the set of
symmetry operations which are valid in the asymmetric unit. In the case of an oligomeric protein
the asymmetric unit of a crystal cell may contain more than one copy of a subunit. The positions
of these subunits in direct space are defined by the symmetry operations of the assymetric unit.



Table 1. Intensity data statistics (F2 > 1.0 ©).

Derivative Resolution Measurements Independent Measured/Possible Rinergel %)

Reflections Reflections
ITAN =-3.3 75100 27700 0.850 to 3.3A 13.1
AuCN 00-3.2 87250 32200 0.673 10 3.2A 12.8
CMAA 00-3.6 71300 24800 0.767 to 3.6A 13.9
WAC 00-3.4 38200 23000 0.741 to 3.4A 12.8
WP 00-3.6 19000 13700 0.434 10 3.6A 9.4
LUMO 00-3.6 32500 18300 0.684 to 3.6A 11.0

ITAN, native crystals; Ry erge = ZEI<Ip>-Tnil/ENp<l >, where <I> is the average intensity of N, measurements
and l; is the individual intensity of a reflection h.

LUMO, functional derivative obtained by soaking the native crystals with ImM of the dioxolumazine (Ligand 6)
in 1.75 M potassium phosphate buffer, pH = 8.7, at 20°C.

Generally we may define a symmetry operation in 3D space by way of a linear transformation
including a 3x3 Matrix R and a translation vector t as

x =Rx+t [12]
and p(x") = p(x) [13]

for all positions x within a crystal or its asymmetric unit.
The Symmetry of Icosahedral Polyhedrons

The ancient Greek mathematicians already knew that only five regular polyhedrons can
exist, the so-called platonic solids. These are tetrahedron, octahedron, icosahedron, cube and
dodecahedron. Nowadays it is well established that geometry and symmetry of these bodies
represent an important principle which governs the self-assembly of protein subunits in quite a
large numbser of cases. A regular icosahedron (Figure 4) is constructed from 20 equilateral
triangles and possesses 6 fivefold (n = 72°), 10 threefold (n = 120°) and 15 twofold (n = 180°)

rotation symmetry axes. All of these axes intersect at a common point which represents the
center (origin) of the particle.

A regular icosahedron is characterized by 60 asymmetric units. This number represents the
maximum number of identical units which may be arranged on a closed symmetrical shell. Thus

Figure 4. Icosahedron with all symmetry elements of one triangular face indicated: (@) twofold
axis, (W) threefold axis, (@) fivefold axis. All of the symmeiry axes intersect at the

center of the particle: an icosahedral asymmetric unit is defined as the triangular region
in between two fivefold and one threefold axis.



