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. PREFACE

The decade following World War I1 has seen tremendous progress
in the development of automatic computers and in their application to
engineering problems. The perfection of bigh-capacity, accurate general-
purpose analog and digital computers has opened up to the engineer
entirely new avenues of analysis and design and has permitted the treat-
ment of problems of ever-increasing complexity and difficulty.

As both analog and digital equipment became available to industrial
and university research organizations, a logical “division of labor”’ took
place between these two major computing methods. Digital computers
are generally recognized as the appropriate tool for dealing with problems
in which high accuracy is required and in which a large number of items
of data must be tabulated and manipulated. Problems in which an
accuracy of about 1 per cent is adequate and in which a direct insight
into the physics of the system under study is desired are more effectively
and conveniently handled by electric or electronic-analog equipment.
In this respect analog computers have become particularly useful in
dealing with problems involving differential equations.

Differential equations constitute the heart of virtually all branches
of engineering, and the description of physical phenomena by ordinary
or partial differential equations generally constitutes the first step in the
scientitic analyxis or synthesis of engineering systems. The power and
utility of the analog mcthod lie in the fact that the characteristic equa-
tions of a wide variety of engineering ficlds are inherently similar and
subjeet to the same analytieal treatment. Therefore, a small number of
highly refined computing techniques are effective in solving most of the
differential equations encountered in engincering work. The optimum
utilization of the analog approach then demands a grasp of the mathe-
matical foundation of engineering systems, as well as a thorough under-
standing of the capabilities and limitations of available analog equipment
and availuble computiug techuiques, '

An examination of recent technical literature reveals that a compre-
hensive and effective computer philosophy exists for the solution of
engineomg problems governed by ordinary differential equations—that
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i ' : PREFACE -

is, problems in which the system parameters occur in lumped form, as is
the case in dynamic analysis and servomechanisms. On the other hand,
the treatment of systems described by partial differential equations, in
which the parameters are distributed or continuous in nature, does not
seem to have epjoyed such a general approach. A major reason for
this disparity lies in the manner in which the analog computing field
developed.
The analog treatment of lumped systems had to await the perfection
of electronic differential analyzers—relatively large complex general-
purpose instruments which first became available commercially about
1948. The requirements of the aircraft industry and competition
‘between several computer manufacturers gave a sudden impetus to a
systematic investigation of the application of this new equipment to &
wide range of problems.. The modern analog approach to ordimary
differential equations, therefore, started with the appearance of a power-
ful new device, followed by a search for new applications for this device.
The effective treatment of distributed systems by means of electric
analogs preceded that of lumped systems by at least twenty years.” The
emphasis, however, was invariably on special-purpose-devices and tech-
niques. No organization recognized a financial stake in systematizing
and generalizing the methods used to make them applicable outside a
‘narrow field of interest. Electric analogs are now widely used to simu-
late systems governed by partial differential equations in such diverse
fields as petroleum production, irrigation, geophysics, nuclear-reactor
design, microwave propagation, and aircraft structures and have achieved

great economic importance in these and other areas. An over-all

philosophy for handling these problems seems to be lacking, however.
It is the purpose of this text to belp fill this gap by providing a.com-
prehensive survey of distributed system analogs together with a concise
presentation of the mathematical tools necessary for their optimum
utilization. The approach to the subject is a unified one. The mathe-
matical theory linking the characteristic problems of the various fields
of engineering is developed early in the text. Subsequent examples of
the applications of the electric-analog techniques are then classified and
organized according to their mathematical propertxes rather than the
specialized field in which they became popular. It is hoped that such a
general approach will stimulate further research and progress in this area
along a “broad front” rather than along many independent avenues as
has been the case in the past. ’
The reader is assumed to have a genera.l engineering background of
the type generally attained in the first six or seven semesters of an under-
graduate engineering curriculum. A reasonable familiarity with ordinary
differential equations, as well as some acquaintance with electrical-
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PREFACE . vii

circuit theory, is required. Additional mathematical and electrical
concepts are developed wherever necessary in the text.

The content of the text falls naturally into a general Introductxon
and three major divisions: 1, The Mathematical Model; 2, Analog-simu-
lation Systems; and 3, Analog Applications. Hach of these divisions
ig further subdivided into several chapters.

The introductory chapter is opened with a general dlscussmn of the
occurrence of field problems in engineering work. The typical character-
isties of engmeenng problems are then considered—what is generally
given, and what is to be found, ie., what constitutes a solution. The
place of electric-analog methods and thelr advantages and disadvantagse
in engineering projects is then described, followed by a short evalustion
of the digital-computer approach to the same problems.

The purpose of Part 1, The Mathematical Model, is not to comprisean
extensive mathematical treatise; rather it is to present in a coneise and
usable form the essence of those mathematical principles and techniques
which are of immediate and direct interest in solving partial differential
equations by electric analogs. Proofs and lengthy derivations are
omitted. Where possible, tabular or graphical summaries are included
for easy reference. :

Chapter 2 introduces the conventional terminology and notation of
partial differential equations and demonstrates how basic physieal
assumptions such as continuity and conservation lead to the familiar
characteristic. equations:. The physical implications of these equations,
the nature of. their formulation, and the characteristics of their solution
are considered'in considerable detail. .

Chapter 3, Transformations, shows how the basic equations can be
manipulated. through appropriate changes of variables to facilitate their
solution by analog methods. A briefidiscussion of the basic coordinate
systems (cartesian, cylindrical, spherical) leads to a concise treatment
of conformal transformations. A table showing over twenty of the most
ugeful transformations is included. The chapter includes a survey of
integral transformation techniques by which partial differential equations
can be converted to ordinary differential equations. The principles of
duality and superposition and their utlhzat.lon in analog-simulation work
are also discussed.

Chapter 4 is devoted to the important finite-difference approximations.
The method of expanding partial differential equations into a set of
finite-difference equations is described and summarized in a table listing
the appreximations of the more important partial differential equ:itions
in the three principal coordinate systems. The treatment of boundary
and initial conditions and error-reduction techniques are then considered.
A discussion of convergence and stability concludes the chapter.
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Part 2, Aunalog-simulation Systems, is a comprehensive study of the
various methods of simulating field problems by avalogs. The basic
operation of each system is described in some detail together with such
auxiliary techniques as have been found nseful. The basic advantages
and limitations of the analog systems are then considered, and sources of
error are analyzed in a quantitative manner. ) .

Chapter 5 treats the conductive-solid analogs, particularly the resisi-
ance-paper methods. Chapter 6 is devoted to the electrolytic-tank-
analog systems. Chapter 7 deseribes the important resistance-network
analyzers, while Chbapter 8 includes a detailed treatment of network
analyzers containing reactive clements as well as resistors. Particular
emphasis iz placed on the R(-network analogs. Chapter 9 treats the
direct applications of electronic differential analyzers to the solution of
partial differential equations, ag well as their utilization in supplementing
conduetive-sheet and network analogs. Chapter 10 is a survey of the
more: important nonelectric-analog systems such as fliid mappers,
stretched membranes, and ion-diffusion simulators.

Part & illustrates the application of the mathematical techniques of
Part 1 and the utilization of the analog systems of Part 2 to the solution
of typiral engineering problems, These problems are categorized
aceerding to their mathematical form.  The general nature of each solu-
tion i stressed, aud a special effort is made to provide a physical insight
into the relations between the elemuents of the analog system and the
corresponding elemeuts of the prototype system under study.

Ia this manner Chapter 11 treats field problems governed by Laplace’s,
Poisson’s, and other clliptieal partial differential equations; Chapter 12
illustrates the solution of the ‘diffusion equation and other parabolic
cquations; while Chapter 13 is devoted to problems governed by the
wave equation as well ss by other hyperbolic equations. Chapter 14
illustrates solutions of stress problems governed by the fourth-order
biharmonic equation.

The material aovered in this text can be integrated in an engineering
eurriculum in & number of ways. It has been used for a number of
years as the second half of a one-semester introductory course in analog
computation, taught ou a senior or first-year graduate level. The first
part of this course desls with the solution of ordinary differential equa-
tions by means of electronic analog computers, while the second half is
devoted to field problems. Chapters 3 and 11 to 14 are usually omitted
in such an introductory course. This book has also served as the text
for a full semester course dealing entirely with the analog simulation of
field problems. In such a course the bulk of the students are gradu-
ate students who have completed an introductory course in .analog
eomputations. '
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CHAPTER 1

INTRODUCTION

1.1, What Is a Field? The problems of engineering and applied phys-
ics car be classified into two broad cutegories: those which apply to
lumped systems and those which apply to distributed systems. Famil-
iar examples of lumped systems appear in mechanics and in electric-
circuit theory. Figures 1.1a and b illustrate two such lumped circuits.

In the mechanical circuit the spring & and the mass M represent res-
ervoirs of potential and kinetic energy, respectively, while the dashpot
D is the dissipative element. Likewise, in the electric circuit, the induc-
tor L and the capacitor €' store electric energy while the resistor R dis-
sipates energy. The manner in which these elements react to the applica-
tiont of a force F' or a voltage source ¢ determines entirely the behavior
or response of the systém. [t is to be recognized that the lines connecting
these elements, perhaps linkages in the mechanical cireuit and wires in the
electric circuit, have no significance other than to indicate how the cle-
ments are interconnected. The lengths of these lines or their arrangement,
is immaterial, and the circuits could be redrawn in an infinite number of
ways and still convey the same information.

Another characteristic. of these circuits, and this really constitutes
the distinctive feature of lumped systems, is that the physical dimen-
sions and position of the elements are of no direct consequence. As far
as mechanical-circuit theory is concerned, the symbol labeled % in the
circuit diagram merely represents a functional relationship: namely, that
the force through the spring is proportional to a constant times the dis-
placement between its two extremities, and all the relevant properties of
the spring are lumped in this designation. A number of assumptions are
implicit in this statement. Tor example, it is presumed that the weight
of the spring is negligible. Actually this is not exactly correct, of course,
and the upper half of the spring is necessarily clongated a hit more than
the lower half, since it is acted upon to a greater extent by the weight of
the spring itself. Another assumption made in lumping the character-
istics of the spring is that, when a force is applied to one side of the ele-
ment, this force is felt immediately and in exactly the same form at the
other end of the element and everywhere within the element. Evidently

: 1



2 ' INTRODUCTION [Cuap. 1

if the mass and frictional damping within tke spring are of consequence,
the transient force at the top of the spring is different from that applied
at the bottom.

The lumped approximation of the characteristics of a spring is satis-
factory for many problems of dynamics and facilitates the analysis of
many mass spring systems without excessive error. This approach is
completely inadequate, however, if one is interested in the internal behav-
ior of the spring, that is, how much each segment of the spring is stressed
or strained. Then no choice exists but to recognize that each segment
of the spring, no matter how small, has the properties of mass and damp-
ing as well as those of a pure spring and that all these properties must be

L R
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Fiz. 1.1. Example of lumped systems.

considered together in studying the behavior of the spring under stress.
The convenient idea of a lumped element must be relinquished ; 2 new
concept, that of continuous or distributed parameters, must be intro-
duced; and all stresses and strains must be identified as to their location
along the lengih of the spring. The lumped problem has become a Jield
problem. The distinctive feature of a field problem is that spatial dimen-
sions comprise an integral part of the formulation and solution of the
problem, Mathematically speaking, location in space is characterized
by additional independent variables, whereas in the lumped problem time
is the only independent variable. Some field problems can be formulated
completely by referring only to ome space dimension. The dynamic
problem just discussed is an example of such a one-dimensional system.
If the spring, instead of being a conventional coil spring, is rather in the
form of an elastic sheet, the horizontal spatial position of a point on the
sheet, as well as its vertical position, must be specified in studying the
internal strain. The formulation of the field problem then involves two
space variables. A spring, shaped in the form of an elastic cylinder of
appreciable radius, presents a three-dimensional problem. In each case
the n-dimensional space, within which the spring is confined to move,
constitutes a field. ‘ ‘ .
This transition from a lumped dynamic system to a distributed system
has been discussed in considerable detail to demonstrate the basic char-
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acter of field problems. Precisely the same considerations apply in many
other areas of applied physics and technology. In electric eircuits, such
as the one indicated in Fig. 1.1b, the resistor may contain inductance and
capacitance distributed along its entire length. The determination of the
voltage and current at some point within the resistor, therefore, involves a
. consideration of the location of that point within the resistor and a study
of the nature of its distributed electrical characteristics. The flow of
heat through a conductive medium, the flow of fluids through & perous
medium or through channels, the propagation of sound and electromag-
netic waves through space, the gravitational and magnetic attraction
betweep two bodies—all these phenomena require for their complete
specification and study a knowledge of distributed parameters and of the
location of the point under study within a region of space—a field—and
hence are field problems.

The word “problem’” has come up again and again in this discussion.
It is appropriate, therefore, that some considasration now be given to the
significa:nce of this term in an enginering context.

1.2. What Constitutes an Engineering Probiem? The essencé of most
engineering endeavors is the analysis or synthesis of physical systems. A
system is an assemblage of elements ranging in number from one to
infinity, in either lumped or continuous form, which reacts to an excita-
tion in a known. or predictable manner. For example, the circuits of
Figs. 1.1a and b comprise mechanical and electrical systems, respec-
tively. In field problems, the entire field under consideration is identified
as the system and may be a thermal conductor, a bounded region of space
.in electrostafics, an oil reservoir, or an electric transmission line. Such
s system is said to be passive if it contains no internal-energy sources.
All the systemg just mentioned are passive. 1f internal-energy sources
are present, as, for example, 2 vacuum-tube amplifier in an electric cir-
cuit, the system is said to be active. In either case, the application of
energy to the system brings forth a reaction within the system. In the
mechanical circuit, the application of energy may be in the form of forces
or velocifies at specified points in the circuit. As a result, the elements
of the cireuit mey be set in motion or strained. In the electrie cirecuit,
energy may be applied by valtage or current sources, and voltage drops
and currents may appear as a result in other parts of the circnit. In any
event, a definite cause-effect relationship exists, as determined by the
characteristics of the elements. - The cause is generally termed the excita-
tion or driving function, and the effect, the response. This relationship
is indicated in Fig. 1.2, - S

If the excitation varies with time, the response is also a function of
time, and transient conditions are said to exist. Steady-staté or static
conditions imply that either the excitation has remained unchanged at
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all times or enough time has elapsed since any change in excitation so
that the response has assumed a constent value. It should be clearly
_understond that, in Fig. 1.2, “excitation” does not necessarily refer to a
single source. For example, voltage and current sources could aetsimul-
taneously in various parts of an electric circuit., Likewise, “response”’
includes the effects at all psints in the eircuit which are of interest..
These may include the place at which the excitation is applied. If a
s.chm resistor is connected across a 10-volt battery, the battery is the
excitation, the resistor is the system, and a current of 2 amp is the steady-
state response.

To solve & problem of analysis is to determine the response due to a
given excitation acting upon a known or fully specified system. In the
case of a lumped circuit, the specification of the system involves a -
coneite, possibly but not necessarily mathematical, deséription of the
characteristics of each element and precisely how the elements are inter-
connected ; in addition, the location,
_Excitation 1 o srem | Response | magnitude, and transient character-

istics of all sources acting on the
Fra. 1.2, Causal relationship in physical  sirenit must be furnished. A simi-
wysteras. lar st of specifications is required in
a field-analysis preblem.  Here, however, the specifications must include
both the distributed characteristics of all points within the field and the
location of the field boundaries. The space coordinates of 41l excitations
must likewise be specified. These may act along the field boundaries, at
specific regions within the field, or they may be distributed in a continuous
fashion throughout the field, as, for example, the force of gravity acting
uniformly on the distributed mass of a spring..

The distinction between transient and ste’ic conditions is particularly
significant in the case of field problems. If the response of the system
is a function of time, the problem is called an “initial-value problem.”
In that case, in order to prediet the response of the system, it is necessary
to know the response values of the system at some time, conveniently
referred to as the “initial instant,’’ as well as all the excitation functions
at times subsequent to the initial time. Ior example, if the force F
exciting the spring in ¥ig. 1.la varies with time, it would be necessary
{o know the displucement and velocity of all poinls in the spring at some
specific instant of time in order to be able to predict the transient deflec-
tions within the spring at all subrequent times.  Tn addition, it would be
nocessary to know all the forees acting on the boundary of the spring. A
static field problem is called a “boundary-value problem.”  Since the
excitations and responses are all constant in time, a specification of their
magnitude and foeation within the field is sufficient for the solution of the
analvsis problem.  Both these types of analysis problems have unique




Sukc. 1.2] INTRODUCTION 5

solutions, that is, they have one and ouly one correct solution.  Given the
excitation and the qutem the response is completely and unambignously
determined.

At this pomt it is 1mportant to make a distinction between scientific
and engineering analysis. The pure scientist is impelled to find cormplete
descriptions for physical phenomena.’ In the case of a field problem, he’
considers the problem solved only if he has determined the exact system
behavior at all points in the field for all time. When an engineer attacks
a field problem, on the other hand, he always has a specific objective in
mind (which can probably eventually be translated into dollars and
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Fig. 1.3. Some possible ways of synthesizing a 2-chm impedance.

cents). The engineer may ask, in the case of a heat-transfer problem:
“Where in the thermal conductor is the temperature a maximuam?
Where is the thermal gradient the largest? What is the temperature
along a certain boundary? How long does it take for the conductor to
cool to a certain temperature? ete.”” He does not ask: “What is the
temperature in the conductor at all points and at all times?’* The uim
of engineering analysis is not mathematical description. It is, rather, to
obtain specific answers within a specified accuracy at a minimum chst in
time, labor, and equipment.

The synthesis problem does net have a unique solution. In engincering
synthesis or design, the excitation is specified and a specified response is
to be obtained. The problem is to find ordesign a system that will yicld
this response. The nonuniqueness of the synthests problem is easily
demonstrated by referring to electric-circuit theory. Suppose that it is
desired to synthesize a network which will draw a current of 1 amp
(response) from a 2-volt source (exeitation). A few possible circuit con-
figurations, representing solutions to this simple synthesis problem, are
indicated in Fig. 1.3. Evidently there are an infinite number of solu-
tions. The questions of optimization therefore arise. Perhaps a mini-’
mum number of elements are desirable; in that case the circuit shown in
Fig. 1.3a is best. Perhaps it is preferred that the current through each
element not exceed 14 amp or that the voltage drop across the element
not exceed | volt. In each case, a different circuit represents an optimum
solution. The same consideration evidently applies to field problems.



