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Preface

“We see that the theory of probability is at bottom only common sense reduced to
calculation; it makes us appreciate with exactitude what reasonable minds feel by a
sort of instinct, often without being able to account for it.... It is remarkable that this
science, which originated in the consideration of games of chance, should have become
the most important object of human knowledge .... The most important questions of
life are, for the most part, really only problems of probability.” So said the famous
French mathematician and astronomer (the “Newton of France”) Pierre Simon, Mar-
quis de Laplace. Although many people might feel that the famous marquis, who
was also one of the great contributors to the development of probability, might have
exaggerated somewhat, it is nevertheless true that probability theory has become a
tool of fundamental importance to nearly all scientists, engineers, medical practi-
tioners, jurists, and industrialists. In fact, the enlightened individual had learned to ask
not “Is it s0?” but rather “What is the probability that it is so?”

This book is intended as an elementary introduction to the theory of probabil-
ity for students in mathematics, statistics, engineering, and the sciences (including
computer science, the social sciences and management science) who possess the pre-
requisite knowledge of elementary calculus. It attempts to present not only the math-
ematics of probability theory, but also, through numerous examples, the many diverse
possible applications of this subject.

In Chapter 1 we present the basic principles of combinatorial analysis, which are
most useful in computing probabilities.

In Chapter 2 we consider the axioms of probability theory and show how they
can be applied to compute various probabilities of interest.

Chapter 3 deals with the extremely important subjects of conditional proba-
bility and independence of events. By a series of examples we illustrate how con-
ditional probabilities come into play not only when some partial information is
available, but also as a tool to enable us to compute probabilities more easily, even
when no partial information is present. This extremely important technique of ob-
taining probabilities by “conditioning” reappears in Chapter 7, where we use it to
obtain expectations.

In Chapters 4, 5,and 6 we introduce the concept of random variables. Discrete
random variables are dealt with in Chapter 4, continuous random variables in Chap-
ter 5, and jointly distributed random variables in Chapter 6. The important concepts
of the expected value and the variance of a random variable are introduced in Chap-
ters 4 and 5: These quantities are then determined for many of the common types of
random variables.

Additional properties of the expected value are considered in Chapter 7. Many
examples illustrating the usefulness of the result that the expected value of a sum of ran-
dom variables is equal to the sum of their expected values are presented. Sections on
conditional expectation, including its use in prediction, and moment generating func-
tions are contained in this chapter. In addition, the final section introduces the multi-
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variate normal distribution and presents a simple proof concerning the joint distribu-
tion of the sample mean and sample variance of a sample from a normal distribution.

In Chapter 8 we present the major theoretical results of probability theory. In
particular, we prove the strong law of large numbers and the central limit theorem. Our
proof of the strong law is a relatively simple one which assumes that the random vari-
ables have a finite fourth moment, and our proof of the central limit theorem assumes
Levy’s continuity theorem. Also in this chapter we present such probability inequal-
ities as Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds. The final
section of Chapter 8 gives a bound on the error involved when a probability con-
cerning a sum of independent Bernoulli random variables is approximated by the cor-
responding probability for a Poisson random variable having the same expected value.

Chapter 9 presents some additional topics, such as Markov chains, the Poisson
process, and an introduction to information and coding theory, and Chapter 10 con-
siders simulation.

The sixth edition continues the evolution and fine tuning of the text. There are
many new exercises and examples. Among the latter are examples on utility (Ex-
ample 4c of Chapter 4), on normal approximations (Example 4i of Chapter 5), on
applying the lognormal distribution to finance (Example 3d of Chapter 6), and on
coupon collecting with general collection probabilities (Example 2v of Chapter 7).
There are also new optional subsections in Chapter 7 dealing with the probabilistic
method (Subsection 7.2.1), and with the maximum-minimums identity (Sub-
section 7.2.2).

As in the previous edition, three sets of exercises are given at the end of each
chapter. They are designated as Problems, Theoretical Exercises, and Self-Test Prob-
lems and Exercises. This last set of exercises, for which complete solutions appear in
Appendix B, is designed to help students test their comprehension and study
for exams.

All materials included on the Probability Models diskette from previous editions
can now be downloaded from the Ross companion website at http://www.prenhall.com/
Ross. Using the website students will be able to perform calculations and simulations
quickly and easily in six key areas:

* Three of the modules derive probabilities for, respectively, binomial, Poisson, and
normal random variables.

* Another module illustrates the central limit theorem. It considers random
variables that take on one of the values 0, 1, 2, 3, 4 and allows the user to enter
the probabilities for these values along with a number n. The module then
plots the probability mass function of the sum of n independent random vari-
ables of this type. By increasing n one can “see” the mass function converge to
the shape of a normal density function.

* The other two modules illustrate the strong law of large numbers. Again the
user enters probabilities for the five possible values of the random variable
along with an integer n. The program then uses random numbers to simulate
n random variables having the prescribed distribution. The modules graph the
number of times each outcome occurs along with the average of all outcomes.
The modules differ in how they graph the results of the trials.
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CHAPTER 1

Combinatorial Analysis

1.1

INTRODUCTION

Here is a typical problem of interest involving probability. A communication system
is to consist of n seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns
out that exactly m of the n antennas are defective, what is the probability that the re-
sulting system will be functional? For instance, in the special case where n = 4 and
m = 2 there are 6 possible system configurations—namely,

0 0

_ = O = O
= O O O
QO e = O
O = O

where 1 means that the antenna is working and O that it is defective. As the result-
ing system will be functional in the first 3 arrangements and not functional in the re-
maining 3, it seems reasonable to take = } as the desired probability. In the case
of general n and m, we could compute the probability that the system is functional
in a similar fashion. That is, we could count the number of configurations that result
in the system being functional and then divide by the total number of all possible
configurations.

From the preceding we see that it would be useful to have an effective method
for counting the number of ways that things can occur. In fact, many problems in
probability theory can be solved simply by counting the number of different ways
that a certain event can occur. The mathematical theory of counting is formally
known as combinatorial analysis.



