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PREFACE

What this book is about. The theory of sets is a vibrant, exciting mathematical
theory, with its own basic notions, fundamental results and deep open prob-
lems, and with significant applications to other mathematical theories. At the
same time. axiomatic set theory is often viewed as a foundation of mathematics:
it is alleged that all mathematical objects are sets, and their properties can be
derived from the relatively few and elegant axioms about sets. Nothing so
simple-minded can be quite true, but there is little doubt that in standard.
current mathematical practice, “making a notion precise” is essentially syn-
onymous with “defining it in set theory”. Set theory is the official language of
mathematics, just as mathematics is the official language of science.

Like most authors of elementary, introductory books about sets, I have
tried to do justice to both aspects of the subject.

From straight set theory, these Notes cover the basic facts about “abstract
sets”, including the Axiom of Choice, transfinite recursion, and cardinal and
ordinal numbers., Somewhat less common is the inclusion of a chapter on
“pointsets” which focuses on results of interest to analysts and introduces
the reader to the Continuum Problem, central to set theory from the very
beginning. There is also some novelty in the approach to cardinal numbers,
which are brought in very early (following Cantor, but somewhat deviously).
so that the basic formulas of cardinal arithmetic can be taught as quickly as
possible. Appendix A gives a more detailed “construction” of the real numbers
than is common nowadays, which in addition claims some novelty of approach
and detail. Appendix B is a somewhat eccentric, mathematical introduction
to the study of natural models of various set theoretic principles, including
Aczel’s Antifoundation. It assumes no knowledge of logic, but should drive
the serious reader to study it.

About set theory as a foundation of mathematics, there are two aspects of
these Notes which are somewhat uncommon. First, I have taken seriously
this business about “everything being a set” (which of course it is not) and
have tried to make sense of it in terms of the notion of faithful representation
of mathematical objects by structured sets. An old idea, but perhaps this
is the first textbook which takes it seriously, tries to explain it, and applies
it consistently. Those who favor category theory will recognize some of its
basic notions in places, shamelessly folded into a traditional set theoretical
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approach to the foundations where categories are never mentioned. Second.
computation theory is viewed as part of the mathematics “to be founded”
and the relevant set theoretic results have been included, along with several
examples. The ambition was to explain what every young mathematician or
theoretical computer scientist needs to know about sets.

The book includes several historical remarks and quotations which in some
places give it an undeserved scholarly gloss. All the quotations (and most
of the comments) are from papers reprinted in the following two, marvellous
and easily accessible source books, which should be perused by all students
of set theory: ‘

Georg Cantor, Contributions to the founding of the theory of transfinite
numbers, translated and with an Introduction by Philip E. B. Jourdain, Dover
Publications, New York.

Jean van Heijenoort, From Frege to Godel, Harvard University Press, Cam-
bridge, 1967.

How to use it. About half of this book can be covered in a Quarter (ten
weeks), somewhat more in a longer Semester. Chapters 1 — 6 cover the
beginnings of the subject and they are written in a leisurely manner, so that
the serious student can read through them alone, with little help. The trick
to using the Notes successfully in a class is to cover these beginnings very
quickly: skip the introductory Chapter 1, which mostly sets notation: spend
about a week on Chapter 2, which explains Cantor’s basic ideas; and then
proceed with all deliberate speed through Chapters 3 — 6, so that the theory
of well ordered sets in Chapter 7 can be reached no later than the sixth week.,
preferably the fifth. Beginning with Chapter 7. the results are harder and the
presentation i1s more compact. How much of the “real” set theory in Chapters
7 — 12 can be covered depends. of course, on the students, the length of the
course, and what is passed over. If the class is populated by future computer
scientists, for example, then Chapter 6 on Fixed Points should be covered in
full, with its problems, but Chapter 10 on Baire Space might be omitted, sad
as that sounds. For budding young analysts, at the other extreme, Chapter
6 can be cut off after 6.27 (and this too is sad), but at least part of Chapter
10 should be attempted. Additional material which can be left out, if time is
short, includes the detailed development of addition and multiplication on the
natural numbers in Chapter 5, and some of the less central applications of the
Axiom of Choice in Chapter 9. The Appendices are quite unlikely to be taught
in a course (I devote just one lecture to explain the idea of the construction
of the reals in Appendix A), though I would like to think that they might be
suitable for undergraduate Honors Seminars, or individual reading courses.

Since elementary courses in set theory are not offered regularly and they
are seldom long enough to cover all the basics, 1 have tried to make these
Notes accessible to the serious student who is studying the subject on their
own. There are numerous, simple Exercises strewn throughout the text. which
test understanding of new notions immediately after they are introduced. In
class I present about half of them, as examples, and I assign some of the rest
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for easy homework. The Problems at the end of each chapter vary widely in
difficulty, some of them covering additional material. The hardest problems
are marked with an asterisk (*).

Acknowledgments. I am grateful to the Mathematics Department of the
University of Athens for the opportunity to teach there in Fall 1990, when I
wrote the first draft of these Notes, and especially to Prof. A. Tsarpalias who
usually teaches that Set Theory course and used a second draft in Fall 1991;
and to Dimitra Kitsiou and Stratos Paschos for struggling with PCs and laser
printers at the Athens Polytechnic in 1990 to produce the first “hard copy”
version. I am grateful to my friends and colleagues at UCLA and Caltech
(hotbeds of activity in set theory) from whom I have absorbed what I know of
the subject, over many years of interaction. I am especially grateful to my wife
Joan Moschovakis and my student Darren Kessner for reading large parts of
the preliminary edition, doing the problems and discovering a host of errors;
and to Larry Moss who taught out of the preliminary edition in the Spring
Term of 1993, found the remaining host of errors and wrote out solutions to
many of the problems.

The book was written more-or-less simultaneously in Greek and English, by
the magic of bilingual IZTgXand in true reflection of my life. I have dedicated it
to Prof. Nikos Kritikos (a student of Caratheodory), in fond memory of many
unforgettable hours he spent with me back in 1973, patiently teaching me how
to speak and write mathematics in my native tongue, but also much about the
love of science and the nature of scholarship. In this connection, I am also
greatly indebted to Takis Koufopoulos, who read critically the preliminary
Greek version, corrected a host of errors and made numerous suggestions
which (I believe) improved substantially the language of the final Greek draft.

Palaion Phaliron, Greece November 1993

About the 2nd edition. Perhaps the most important changes I have made
are in small things, which (I hope) will make it easier to teach and learn from
this book: simplifying proofs, streamlining notation and terminology, adding
a few diagrams, rephrasing results (especially those justifying definition by
recursion) to ease their applications, and, most significantly, correcting errors,
typographical and other. For spotting these errors and making numerous,
useful suggestions over the years, I am grateful to Serge Bozon, Joel Hamkins,
Peter Hinman, Aki Kanamori, Joan Moschovakis, Larry Moss, Thanassis
Tsarpalias and many, many students.

The more substantial changes include:

— A proof of Suslin's Theorem in Chapter 10, which has also been signifi-
cantly massaged.

— A better exposition of ordinal theory in Chapter 12 and the addition of
some material, including the basic facts about ordinal arithmetic.
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— The last chapter, a compilation of solutions to the Exercises in the
main part of the book — in response to popular demand. This eliminates the
most obvious, easy homework assignments, and so I have added some easy
problems.

I am grateful to Thanos Tsouanas, who copy-edited the manuscript and
caught the worst of my mistakes.

Palaion Phaliron, Greece July 2005
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CHAPTER 1

INTRODUCTION

Mathematicians have always used sets. e.g., the ancient Greek geometers
defined a circle as the set of points at a fixed distance r from a fixed point C,
its center. But the systematic study of sets began only at the end of the 19th
century with the work of the great German mathematician Georg Cantor,
who created a rigorous theory of the concept of completed infinite by which
we can compare infinite sets as to size. For example, let

N ={0,1,...} = the set of natural numbers,
Z={...,—1,0,1,...} = the set of rational integers,
Q = the set of rational numbers (fractions),

R = the points of a straight line,

where we also identify R with the set of real numbers, each point associated
with its (positive or negative) coordinate with respect to a fixed origin and
direction. Cantor asked if these four sets “have the same (infinite) number
of elements”, or if one of them is “more numerous” than the others. Before
we make precise and answer this question in the next chapter, we review here
some basic, well-known facts about sets and functions, primarily to explain
the notation we will be using.

What are sets, anyway? The question is like “what are points”, which Euclid
answered with

a point is that which has no parts.

This is not a rigorous mathematical definition, a reduction of the concept of
“point” to other concepts which we already understand. but just an intuitive
description which suggests that a point is some thing which has no extension
in space. Like that of point, the concept of set is fundamental and cannot be
reduced to other, simpler concepts. Cantor described it as follows:

By a set we are to understand any collection into a whole of definite
and separate objects of our intuition or our thought.

Vague as it is, this description implies two basic properties of sets.

1. Every set 4 has elements or members. We write
X € A <= the object x is a member of (or belongs to) A.

1



2 NOTES ON SET THEORY

2. A set is determined by its members. i.e.. if 4. B are sets, then'
A =B <= A and B have the same members (1-1)
< (Vx)[x €A < x € B].

This last is the Extensionality Property. For example, the set of students in
this class will not change if we all switch places, lie down or move to another
classroom: this set is completely determined by who we are. not our posture
or the places where we happen to be.

Somewhat peculiar is the empty set () which has no members. The exten-
sionality property implies that there is only one empty set.

If A and B are sets, we write

ACB < (Vx)[x e A= x € B],
and if 4 C B. we call 4 a subset of B, so that for every B,
0WCB, BCB.
A proper subset of B is a subset distinct from B,
ACB < [ACB&A+# B].
From the extensionality property it follows that for all sets 4, B,
A=B < ACB&BCA.

We have already used several different notations to define specific sets and
we need still more, e.g..

A=A{a,a....a,}
is the (finite) set with members the objects ay. as. . ... a,. If P is a condition
which specifies some property of objects, then

A={x| P(x)}
is the set of all objects which satisfy the condition P, so that for all x,
x € A < P(x).
For example, if
P(x) < x € N&x iseven,

then {x | P(x)} is the set of all even. natural numbers. We use a variant of this
notation when we are only interested in “collecting into a whole” members of
a given set 4 which satisfy a certain condition:

{x€eA|P(x)} =¢ {x|x € A& P(x)}.

'We will use systematically, as abbreviations, the logical symbols
& :and, V:or, = :not, = :implies, <= :if and only if,

V : for all, 3 : there exists, 3! : there exists exactly one.

The symbols =4 and <=4 are read “equal by definition” and “equivalent by definition”.
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AUB ANB A\ B

FIGURE 1.1. The Boolean operations.

so that. for example, {x € N | x > 0} is the set of all non-zero natural
numbers, while {x € R | x > 0} is the set of all positive real numbers.
For any two sets” 4. B,
AUB={x|x€AVxe B} (theunionofA,B),
ANB={x€ A|x € B} (the intersection of 4, B),
A\B={x€A|x ¢ B} (the difference of 4, B).
These “Boolean operations™ are illustrated in the so-called Venn diagrams of

Figure 1.1, in which sets are represented by regions in the plane. The union
and the intersection of infinite sequences of sets are defined in the same way.

Unodn =AU A1 U= {x | (3n € N)[x € 4,]},
ﬂ:o:OAn =AgNAN---= {x I (Vn GN)[X EA,,]}.

Two sets are disjoint if their intersection is empty.,
A is disjoint from B <= AN B = (.

We will use the notations
f:X—>Yor A LB

to indicate that / is a function which associates with each member x of the
set X, the domain of / some member f(x) of the range Y of /. Functions
are also called mappings. operations, transformations and many other things.
Sometimes it is convenient to use the abbreviated notation (x +— f (x)) which
makes it possible to talk about a function without officially naming it. For
example,
(x - x2+1)

is the function on the real numbers which assigns to each real its square
increased by 1; if we call it /', then it is defined by the formula

flx)=x*+1 (xeR)

’In “mathematical English”. when we say “for any two objects x, y”, we do not mean that
necessarily x # y, e.g., the assertion that “for any two numbers x, y, (x + y)% = x2 + 2xy + y2”
implies that “for every number x, (x + x)? = x2 4 2xx + x2”.
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sothat £(0) = 1, £(2) = 5, etc. But we can say “all the values of (x + x?+1)
are positive reals” without necessarily fixing a name for it, like .

Two functions are equal if they have the same domain and they assign the
same value to every member of their common domain,

f=g <= (WxeX)[f(x)=g(x)] (f: XY g:X—-ZxeX).
In connection with functions we will also use the notations
f:X — Y <=4 [ isan injection (one-to-one)
e (¥, x' e X)[flx)=fx)=—=x=x1.

f:X —= Y <=4 f isasurjection (onto)
— (Vy e Y)3x e X)[f(x) =yl

f X —» Y <=y f isa bijection or a correspondence
— (VyeY)3xeX)[f(x)=y]
Forevery f : X — Y and 4 C X, the set

flAl=ar {f(x) | x € 4}
is the image of 4 under /', and if B C Y, then

f7[Bl=a {x € X| f(x)€ B}

is the pre-image of B by f.
If / is a bijection. then we can define the inverse function / ~': ¥ — X by
the condition

[Tl =x = flx) =y

and then the inverse image f~![B] (as we defined it above) is precisely the
image of B under f .

The composition

h=agf:X—-Z
of two functions
¥Lytz
is defined by
h(x) =g(f(x)) (x€X).

It is easy to prove many basic properties of sets and functions using only

these definitions and the extensionality property. For example.
AUB=BUA,

because. for any x.

x€AUB < xec€Aorx e B
<= x€eBorxeA
< x € BUA.

In some cases. the logic of the argument gets a bit complex and it is easier
to prove an identity U = V by verifying separately the two implications



CHAPTER 1. INTRODUCTION 5

xeU=xe€Vandx € V=x € U. Forexample, if f : X — Y and
A.B C X, then

fl4U B] = f[4]U f[B].
To prove this, we show first that

x € f[AUB]l|= x € f[A4]U f[B];
this holds because if x € f[4 U B], then there is some y € 4 U B such that
x = f(y);andif y € A, then x = f(y) € f[A] C f[4]U f[B]. while if
y € B, thenx = f(y) € f[B] C f[4A]U f[B]. Next we show the converse
implication, that

x € f[A]U f[B]=>x € f[A U B];

this holds because if x € f[A4]. then x = f(y) forsome y € 4 C AU B, and
sox € f[AU B], whileif x € f[B],thenx = f(y)forsomey € BC AUB,
and so, again, x € f[4 U B].

Problems for Chapter 1

x1.1. For any three sets 4, B, C,
AU(BNC)=(AUB)N(4U C),
NBUC)=(ANB)UANC),
A\(ANB)=A\B.
x1.2. (De Morgan’s laws) For any three sets 4. B, C.
C\(AuB)=(C\A4)N(C\B).
C\(ANB)=(C\A4)uU(C\ B).

x1.3. (De Morgan’s laws for sequences) For any set C and any sequence of
sets {dy}n = Ao, A1, ...,

x1.4. For every injection f : X »— Y.,andall 4, B C X,
f14N Bl = flA4]n f[B].
f14\ B] = f[4]\ f[B].
Show also that these identities do not always hold if f is not an injection.
x1.5. Forevery f : X — Y,andall4,. BC Y,
S7'[4UB]= f7'[4]u f'[B],
S7'An Bl = f~'4]ln f7'[B],
S7HAN Bl = f7A]N £ B



